首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2186篇
  免费   110篇
  国内免费   5篇
电工技术   31篇
综合类   8篇
化学工业   648篇
金属工艺   40篇
机械仪表   45篇
建筑科学   117篇
矿业工程   6篇
能源动力   69篇
轻工业   198篇
水利工程   20篇
石油天然气   7篇
无线电   182篇
一般工业技术   383篇
冶金工业   169篇
原子能技术   20篇
自动化技术   358篇
  2023年   27篇
  2022年   35篇
  2021年   44篇
  2020年   35篇
  2019年   46篇
  2018年   52篇
  2017年   52篇
  2016年   72篇
  2015年   67篇
  2014年   83篇
  2013年   117篇
  2012年   102篇
  2011年   145篇
  2010年   106篇
  2009年   96篇
  2008年   113篇
  2007年   101篇
  2006年   78篇
  2005年   79篇
  2004年   58篇
  2003年   68篇
  2002年   50篇
  2001年   37篇
  2000年   34篇
  1999年   38篇
  1998年   60篇
  1997年   36篇
  1996年   36篇
  1995年   33篇
  1994年   28篇
  1993年   31篇
  1992年   18篇
  1991年   22篇
  1990年   22篇
  1989年   20篇
  1988年   10篇
  1987年   13篇
  1986年   20篇
  1985年   22篇
  1984年   18篇
  1983年   11篇
  1982年   9篇
  1981年   12篇
  1980年   13篇
  1979年   11篇
  1978年   17篇
  1977年   9篇
  1976年   17篇
  1974年   12篇
  1973年   8篇
排序方式: 共有2301条查询结果,搜索用时 15 毫秒
91.
92.
The potential of two hydrolytic enzymes, namely a lipase from Thermomyces lanuginosus (TlL) and a cutinase from Humicola insolens (HiC) for hydrolysis of the phthalic acid backbone based polyester coatings was assessed. Two phthalic acid/trimethylolpropane based model substrates resembling the structure of the polyester backbone of coatings were synthesized. Out of both enzymes, only the cutinase was able to hydrolyze both model substrates while the larger substrate was hydrolyzed at a lower rate. The cutinase was also able to hydrolyze a coating (alkyd resin) both in suspension and as dried film. LC–MS analysis of the hydrolysis products released from the coating revealed the presence of oleic acid, its monoglyceride, phthalic acid and 2-((3-((2-((2,3-dihydroxypropoxy)carbonyl)benzoyl)oxy)-2-hydroxypropoxy)carbonyl)benzoic acid. These results indicate that the enzyme was able to hydrolyze the polyester backbone as well as to release fatty acid side chains. Consequently, enzymatic hydrolysis has a potential for the removal of coatings, their recycling or their functionalization.  相似文献   
93.
The Jørgensen–Hayashi catalyst [(S)‐α,α‐diphenylprolinol trimethylsilyl ether] was grafted onto the surface of two different supports: phosphorus dendrimers (generations 1 to 3) and magnetic, polymer‐coated cobalt/carbon (Co/C) nanobeads. These new supported catalysts displayed high activities and selectivities in the Michael additions of a wide range of aldehydes to different nitroolefins. Moreover, the dendrimer of the third generation displayed excellent recycling abilities since it could be recovered and reused in 7 consecutive runs without loss of activity.  相似文献   
94.
Cellular signal transduction proceeds through a complex network of molecular interactions and enzymatic activities. The timing of these molecular events is critical for the propagation of a signal and the generation of a specific cellular response. To define the timing of signalling events, we introduce the combination of high-resolution confocal microscopy with the application of small-molecule inhibitors at various stages of signal transduction in T cells. Inhibitors of Src-family tyrosine kinases and actin dynamics were employed to dissect the role of the lymphocyte-specific tyrosine kinase Lck in the formation and maintenance of T cell receptor/CD3-dependent contacts. Anti-CD3epsilon-coated coverslips served as a highly defined stimulus. The kinetics of the recruitment of the yellow fluorescent protein-tagged signalling protein ZAP-70 were detected by high-resolution confocal microscopy. The analysis revealed that at 5 min after receptor engagement, Lck activity was required for maintenance of contacts. In contrast, after 20 min of receptor engagement, the contacts were Lck-independent. The relevance of the timing of inhibitor application provides a pharmacological concept for the maturation of T cell-substrate contacts.  相似文献   
95.
Cell-penetrating peptides (CPPs) have become widely used vectors for the cellular import of molecules in basic and applied biomedical research. Despite the broad acceptance of these molecules as molecular carriers, the details of the mode of cellular internalization and membrane permeation remain elusive. Within the last two years endocytosis has been demonstrated to be a route of uptake shared by several CPPs. These findings had a significant impact on CPP research. State-of-the-art cell biology is now required to advance the understanding of the intracellular fate of the CPP and cargo molecules. Owing to their presumed ability to cross lipid bilayers, CPPs also represent highly interesting objects of biophysical research. Numerous studies have investigated structure-activity relationships of CPPs with respect to their ability to bind to a lipid bilayer or to cross this barrier. Endocytosis route only relocates the membrane permeation from the cell surface to endocytic compartments. Therefore, biophysical experiments are key to a mechanistic molecular understanding of the cellular uptake of CPPs. However, biophysical investigations have to consider the molecular environment encountered by a peptide inside and outside a cell. In this contribution we will review biophysical and cell-biology data obtained for several prominent CPPs. Furthermore, we will summarize recent findings on the cell-penetrating characteristics of antimicrobial peptides and the antimicrobial properties of CPPs. Peptides of both groups have overlapping characteristics. Therefore, both fields may greatly benefit from each other. The review will conclude with a perspective of how biophysics and cell biology may synergize even more efficiently in the future.  相似文献   
96.
The role of ozone was studied for two different configurations combining non-thermal plasma (NTP) and heterogeneous catalysis, namely the use of a gas phase plasma with subsequent exposure of the effluent to a catalyst in a packed-bed reactor (post-plasma treatment) and the placement of the catalyst directly in the discharge zone (in-plasma catalysis). Non-porous and porous alumina and silica were deployed as model catalysts. The oxidation of immobilised hydrocarbons, toluene as a volatile organic compound and CO as an inorganic pollutant were studied in both operational modes.

While conversion and selectivity of hydrocarbon oxidation in the case of catalytic post-plasma treatment can be fully explained by the catalytic decomposition of O3 on γ-Al2O3, the conversion processes for in-plasma catalysis are more complex and significant oxidation was also measured for the other three materials (-Al2O3, quartz and silica gel). It became obvious that additional synergetic effects can be utilised in the case of in-plasma catalysis due to short-lived species formed in the NTP.

The capability of porous alumina for ozone decomposition was found to be correlated with its activity for oxidation of carbon-containing agents. It could be clearly shown that the reaction product CO2 poisons the catalytic sites at the γ-Al2O3 surface. The catalytic activity for O3 decomposition can be partially re-established by NTP treatment. However, for practical purposes the additional reaction pathways provided by in-plasma catalytic processes are essential for satisfactory conversion and selectivity.  相似文献   

97.
The effects of the extrusion rate on the morphological changes of poly(lactic acid) (PLA)/poly(vinyl alcohol) (PVA) blend through a capillary die were investigated. In this study, the extrusion rate or mass flow rate is altered from 0.5 g min?1 to 2 g min?1 with an increment of 0.5 g min?1. The PLA/PVA blend with a composition of 30/70 (wt %) exhibits a particle matrix morphology with dispersed PLA droplets within the PVA matrix. It is found that, the spherical or ellipsoidal dispersed PLA droplets are elongated and coalesced into rod‐like or longer ellipsoidal droplets when they pass through the capillary die. When the extrusion rate increases, the coalescence between the large PLA droplets occurs more intense. However, the changes of the extrusion rate have no strong effect on the coalescence of small droplets having diameter less than about 150 nm. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44257.  相似文献   
98.
Overexpression of the histone lysine demethylase KDM4A, which regulates H3K9 and H3K36 methylation states, has been related to the pathology of several human cancers. We found that a previously reported hydroxamate‐based histone deacetylase (HDAC) inhibitor (SW55) was also able to weakly inhibit this demethylase with an IC50 value of 25.4 μm . Herein we report the synthesis and biochemical evaluations, with two orthogonal in vitro assays, of a series of derivatives of this lead structure. With extensive chemical modifications on the lead structure, also by exploiting the versatility of the radical arylation with aryldiazonium salts, we were able to increase the potency of the derivatives against KDM4A to the low‐micromolar range and, more importantly, to obtain demethylase selectivity with respect to HDACs. Cell‐permeable derivatives clearly showed a demethylase‐inhibition‐dependent antiproliferative effect against HL‐60 human promyelocytic leukemia cells.  相似文献   
99.
Despite the long‐known fact that the facilitative glucose transporter GLUT1 is one of the key players safeguarding the increase in glucose consumption of many tumor entities even under conditions of normal oxygen supply (known as the Warburg effect), only few endeavors have been undertaken to find a GLUT1‐selective small‐molecule inhibitor. Because other transporters of the GLUT1 family are involved in crucial processes, these transporters should not be addressed by such an inhibitor. A high‐throughput screen against a library of ~3 million compounds was performed to find a small molecule with this challenging potency and selectivity profile. The N‐(1H‐pyrazol‐4‐yl)quinoline‐4‐carboxamides were identified as an excellent starting point for further compound optimization. After extensive structure–activity relationship explorations, single‐digit nanomolar inhibitors with a selectivity factor of >100 against GLUT2, GLUT3, and GLUT4 were obtained. The most promising compound, BAY‐876 [N4‐[1‐(4‐cyanobenzyl)‐5‐methyl‐3‐(trifluoromethyl)‐1H‐pyrazol‐4‐yl]‐7‐fluoroquinoline‐2,4‐dicarboxamide], showed good metabolic stability in vitro and high oral bioavailability in vivo.  相似文献   
100.
The methyllysine reader protein Spindlin1 has been implicated in the tumorigenesis of several types of cancer and may be an attractive novel therapeutic target. Small‐molecule inhibitors of Spindlin1 should be valuable as chemical probes as well as potential new therapeutics. We applied an iterative virtual screening campaign, encompassing structure‐ and ligand‐based approaches, to identify potential Spindlin1 inhibitors from databases of commercially available compounds. Our in silico studies coupled with in vitro testing were successful in identifying novel Spindlin1 inhibitors. Several 4‐aminoquinazoline and quinazolinethione derivatives were among the active hit compounds, which indicated that these scaffolds represent promising lead structures for the development of Spindlin1 inhibitors. Subsequent lead optimization studies were hence carried out, and numerous derivatives of both lead scaffolds were synthesized. This resulted in the discovery of novel inhibitors of Spindlin1 and helped explore the structure–activity relationships of these inhibitor series.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号