首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   0篇
化学工业   13篇
金属工艺   4篇
机械仪表   2篇
建筑科学   2篇
能源动力   6篇
轻工业   3篇
无线电   7篇
一般工业技术   27篇
冶金工业   1篇
自动化技术   14篇
  2023年   1篇
  2022年   7篇
  2021年   3篇
  2020年   5篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2014年   4篇
  2013年   11篇
  2012年   1篇
  2011年   10篇
  2010年   5篇
  2009年   4篇
  2008年   5篇
  2007年   4篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1994年   2篇
排序方式: 共有79条查询结果,搜索用时 0 毫秒
11.

Wireless sensor networks (WSNs) have become an important component in the Internet of things (IoT) field. In WSNs, multi-channel protocols have been developed to overcome some limitations related to the throughput and delivery rate which have become necessary for many IoT applications that require sufficient bandwidth to transmit a large amount of data. However, the requirement of frequent negotiation for channel assignment in distributed multi-channel protocols incurs an extra-large communication overhead which results in a reduction of the network lifetime. To deal with this requirement in an energy-efficient way is a challenging task. Hence, the Reinforcement Learning (RL) approach for channel assignment is used to overcome this problem. Nevertheless, the use of the RL approach requires a number of iterations to obtain the best solution which in turn creates a communication overhead and time-wasting. In this paper, a Self-schedule based Cooperative multi-agent Reinforcement Learning for Channel Assignment (SCRL CA) approach is proposed to improve the network lifetime and performance. The proposal addresses both regular traffic scheduling and assignment of the available orthogonal channels in an energy-efficient way. We solve the cooperation between the RL agents problem by using the self-schedule method to accelerate the RL iterations, reduce the communication overhead and balance the energy consumption in the route selection process. Therefore, two algorithms are proposed, the first one is for the Static channel assignment (SSCRL CA) while the second one is for the Dynamic channel assignment (DSCRL CA). The results of extensive simulation experiments show the effectiveness of our approach in improving the network lifetime and performance through the two algorithms.

  相似文献   
12.
The photopyroelectric (PPE) technique is one of the photothermal (PT) methods mostly used for phase transitions investigations. In this paper, we want to compare the PPE results with those obtained using another, recently developed PT method [the photothermoelectric (PTE) calorimetry] for the same purpose of detecting phase transitions. The well-known ferro-paraelectric phase transition of TGS, taking place at a convenient temperature (about \(49\, {}^{\circ }\hbox {C}\)), has been selected for demonstration. A comparison of the two PPE and PTE methods, both in the back detection configuration (in the special case of optically opaque sample and thermally thick regime for both sensors and sample) shows that they are equally suitable for phase transitions detection. Performing a proper calibration, the amplitude and phase of the signals can be used in order to obtain the critical behaviour of all sample’s static and dynamic thermal parameters.  相似文献   
13.
We report the measurement of the degenerate fourth-wave mixing (DFWM) of new dithienylethylenes in chloroform solutions at λ=532 nm in ps regime with different numbers of π-conjugated bonds. From these measurements, we evaluated the values of the second order hyperpolarizabilities γ, which are about 103 larger than the γ value of CS2. The influence of π-conjugated bonds on the third-order susceptibilities and appropriate figures of merits is discussed. The more important seems to be the possibility of a simultaneous increase of the third-order susceptibilities, together with the decrease of the absorption coefficients that open a possibility of their use as promising materials for laser wavelengths mixing.  相似文献   
14.
Five types of magnetic nanofluids, based on \(\hbox {Fe}_{3}\hbox {O}_{4}\) nanoparticles with water as the carrier liquid, were investigated by using the two photopyroelectric (PPE) detection configurations (back (BPPE) and front (FPPE)), together with the thermal-wave resonator cavity (TWRC) technique as the scanning procedure. The difference between the nanofluids was the type of surfactant: double layers of lauric (LA–LA), oleic (OA–OA), and miristic (MA–MA) acids and also double layers of lauric–miristic (LA–MA) and palmitic-oleic (PA–OA) fatty acids were used. In both detection configurations, the information was contained in the phase of the PPE signal. The thermal diffusivity of nanofluids was obtained in the BPPE configuration, from the scan of the phase of the signal as a function of the liquid’s thickness. Using the same scanning procedure in the FPPE configuration, the thermal effusivity was directly measured. The influence of a 0.12 kG magnetic field on the thermal effusivity and thermal diffusivity was also investigated. Because of different surfactants, the thermal effusivity of the investigated nanofluids ranges from \(1530\,\hbox {W}\cdot \hbox {s}^{1/2} \cdot \hbox { m}^{-2}\cdot \hbox { K}^{-1}\) to \(1790\,\hbox { W}\cdot \hbox {s}^{1/2}\cdot \hbox { m}^{-2}\cdot \hbox { K}^{-1}\) , and the thermal diffusivity, from \(14.54~\times ~10^{-8}\,\hbox { m}^{2}\cdot \hbox { s}^{-1}\) to \(14.79~\times ~10^{-8}\,\hbox { m}^{2}\cdot \hbox { s}^{-1}\) . The magnetic field has practically no influence on the thermal effusivity, and produces a maximum increase of the thermal diffusivity (LA–LA surfactant) of about 4 %.  相似文献   
15.
A novel type of composite for optoelectronic which is operated by second harmonic generation in the Bi2ZnB2O7 crystallites (with sizes varying within 1–30 μm) and Ag nanoparticles (NP) embedded in PMMA polymer composites is proposed. The substantial influence of the Ag NP on the bicolor induced second harmonic generation was established. The phototreatment was performed by bicolor beams of nanosecond Nd:YAG laser (1,064/532 nm) at angles between the fundamental and photoinducing beams varying within the 19°–21° range. The studies of the corresponding dependences of the SHG during illumination by the two coherent beams at 1,064/532 nm showed a maximal enhancement of the output SHG for the Ag NP average sizes equal to about 40 nm. The role of the excited plasmons may be here crucial. Additionally the time shift between the fundamental and the doubled frequency beam maxima was found, which shows strong sensitivity to illumination. The established time shift is sensitive to the pumping power.  相似文献   
16.
In the present study zinc oxide doped Nickel thin films (ZnO:Ni) were deposited on glass substrates using a chemical spray ultrasonic technique. The effect of Ni concentration on the structural, electrical, optical, and non-linear optical (NLO) properties of the ZnO:Ni thin films was investigated. The films were analyzed using X-ray diffraction (XRD), profilometry and optical transmittance. A polycrystalline structure with a preferential growth along the ZnO (002) plane was found, the optical transmittance was found to be higher than 80% and the band gap (Eg) varied from 3.19 to 3.27 eV. The value of the electrical conductivity was found. Moreover, the effective non-linear quadratic and cubic electronic susceptibilities of thin film samples were determined by the SHG and THG techniques, working at 1064 nm.  相似文献   
17.
For the case of flame thickness being of the order of the pore linear dimension, the flame structure and speed in adiabatic, premixed methane-air combustion in porous media are examined. The local, volume-averaged conservation equations that assume a local thermal equilibrium between the solid and the gas phases (i.e. the single-medium treatment) or allow for a thermal nonequilibrium (i.e. the two-medium treatment) are used along with the direct application of the pointwise conservation equation to a two-dimensional porous medium model (ordered arrangement of discrete or connected square cylinders). The effective properties of the porous medium in the volume-averaged treatments, including the interfacial Nusselt number, are found by applying the local volume-averaging principles. The results show that, although significant variations of the temperature and species concentrations occur over a pore, the flame structure, thickness, speed, and excess temperature (i.e. local gas temperature in excess of the adiabatic temperature) are fairly well predicted by the two-medium model (the single-medium treatment is unable to predict the local excess temperature). However, the volume-averaged treatments are unable to predict the pore-level, local high temperature region in the gas phase (which can be up to 40% above the adiabatic temperature), and the pore-level variation in the flame speed with respect to the flame location in the pore (which can vary by up to 20%). Other shortcomings of the volume-averaged treatments are also revealed through a parametric examination involving the pore-geometry variables, solid to gas conductivity ratio, equivalence ratio, porosity, and flame location within the pore.  相似文献   
18.
Four tunnel junction (TJ) designs for multijunction (MJ) solar cells under high concentration are studied to determine the peak tunnelling current and resistance change as a function of the doping concentration. These four TJ designs are: AlGaAs/AlGaAs, GaAs/GaAs, AlGaAs/InGaP and AlGaAs/GaAs. Time‐dependent and time‐average methods are used to experimentally characterize the entire current–voltage profile of TJ mesa structures. Experimentally calibrated numerical models are used to determine the minimum doping concentration required for each TJ design to operate within a MJ solar cell up to 2000‐suns concentration. The AlGaAs/GaAs TJ design is found to require the least doping concentration to reach a resistance of <10−4 Ω cm2 followed by the GaAs/GaAs TJ and finally the AlGaAs/AlGaAs TJ. The AlGaAs/InGaP TJ is only able to obtain resistances of ≥5 × 10−4 Ω cm2 within the range of doping concentrations studied. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
19.
Calcium nano ferrite with composition CaGdxEryFe2?x?yO4 (x?=?y?=?0.0, x?=?0.025, y?=?0.05) was prepared by citrate gel auto combustion method. The prepared samples showed orthorhombic phase structure and the crystallite sizes were found in the range of 32.1–35.3 nm. Detailed observation via the Field Emission Scanning Electron Microscopy (FESEM) showed that the calcium ferrite nano-particles were spherical and capsule like formation shape. The hysteresis loop confirms the magnetic behavior of the investigated samples, which is then discussed on the basis of super exchange interactions. Magnetic parameters such as saturation magnetization, coercivity, and retentivity were obtained. Greater than six-fold increase in coercivity (≈2085 Oe) was observed in calcium nanoferrites compared to the doped samples (≈360 Oe). The CaFe2O4-type structure includes edge- and corner sharing BO6 octahedral, constituting a very unique network similar to perovskite-related nanoparticles. This structural network leads to an improvement in the physical properties of the investigated samples. Great efforts have been made to synthesize pure nanoferrite samples without any secondary phases even after the substitution of low soluble rare earth ions. Special attention should be given to calcium ferrite nanoparticles which are suitable candidates to be used in the manufacturing of bone-like scaffolds, hyperthermia treatment of cancer and biological activity.  相似文献   
20.
A study has been made to investigate the effect of a prior amount of warm rolling on the superplastic forming behavior of a standard grade 7075 aluminum alloy. The thermomechanical treatment process presented for grain refinement includes furnace cooling from the solution treatment temperature to the overaging temperature, warm rolling from 65–85% deformation, recrystallization, and artificial aging treatment. Increasing the amount of warm rolling beyond 80% deformation does not produce material with higher elongation to failure when the thermomechanical treatment process presented is used. The largest value of elongation to failure was 700%, which was obtained for a specimen having a grain size of 8 μm at a strain rate of 6×10−3S−1. The fracture surface exhibits a granular appearance indicative of an intergranular fracture mode. Dislocation activities within grains were observed, indicating the occurrence of dislocation slip during grain boundary sliding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号