首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   11篇
  国内免费   2篇
电工技术   1篇
综合类   1篇
化学工业   68篇
金属工艺   79篇
机械仪表   4篇
建筑科学   4篇
能源动力   12篇
轻工业   16篇
水利工程   2篇
无线电   26篇
一般工业技术   80篇
冶金工业   29篇
原子能技术   1篇
自动化技术   32篇
  2024年   1篇
  2023年   6篇
  2022年   11篇
  2021年   12篇
  2020年   7篇
  2019年   9篇
  2018年   21篇
  2017年   10篇
  2016年   8篇
  2015年   8篇
  2014年   12篇
  2013年   24篇
  2012年   13篇
  2011年   24篇
  2010年   13篇
  2009年   17篇
  2008年   11篇
  2007年   12篇
  2006年   13篇
  2005年   9篇
  2004年   10篇
  2003年   6篇
  2002年   7篇
  2001年   10篇
  2000年   7篇
  1999年   4篇
  1998年   10篇
  1997年   12篇
  1996年   3篇
  1995年   10篇
  1994年   10篇
  1993年   4篇
  1992年   5篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1980年   1篇
  1978年   1篇
  1975年   3篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有355条查询结果,搜索用时 15 毫秒
21.
Spray parameters play an important role on the microstructure and properties of plasma-sprayed coatings. Parameters such as spray distance, plasma gas flow and current, raster speed, and spray angle all can be varied. In this paper, an integrated study to investigate the effects and influences of spray angle on properties of yttria-stabilized zirconia coatings was carried out with spray angles of 60°, 75°, and 90° (to the substrate surface). In situ coating property sensor based on beam curvature measurements was used to measure the evolving stress and elastic moduli of the resultant coatings and combined with other characterization tools for thermo-physical property and microstructure analysis, such as laser flash and scanning electron microscopy. The results indicate that the coating with 60° spray angle had the lowest thermal conductivity and more compliant structure. This study seeks to understand the mechanism for this effect and will provide important insight into parametric sensitivities on complex spray parts.  相似文献   
22.
Magnetic properties of manganese zinc ferrite (MZF) coatings deposited by atmospheric dc plasma spraying largely depend on zinc and oxygen loss during particle flight. The temperature and velocity of in-flight MZF particles were widely varied by changing plasma spray conditions to examine these chemistry changes and resultant magnetic properties. Zn loss increases with increased particle temperature or decreased particle velocity. Meanwhile, wüstite (FeO) formation, related to the oxygen loss, is more complicated, partly because oxygen, which is lost during flight in the high-temperature zone of the plasma jet, can be recovered at longer spray distances. As a result, the saturation magnetization of MZF coatings decreases and the coercivity increases with increased particle temperature or decreased particle velocity.  相似文献   
23.
The growth pattern of Azolla pinnata in association with Spirodela polyrhiza was studied in a permanent pond. These two plants would provide a regular source of biomass. The suitability of integration of Azolla pinnata into other aquatic plants ‐ based wastewater treatment systems has been proposed. The favourable qualities offered by Azolla pinnata as a component in wastewater treatment systems has been emphasized.  相似文献   
24.
The presence of Tollmien-Schlichting waves during the initial stages of the isothermal mixing of two axi-symmetical laminar streams of air has been confirmed by comparing data from hot wire measurements with published two-dimensional theoretical and experimental results for the stability of mixing and for transition in a boundary layer. Hot wire measurements in the flow field of steady or vibrating axi-symmetrical laminar diffusion flames are remarkably similar to those obtained during isothermal mixing. A travelling wave in the mean flow direction has also been established. Data for these flames agree with the results of a higher order stability analysis for natural convection flow past a vertical heated plate. It has been concluded that Tollmien-Schlichting waves are responsible for exciting flame vibrations.  相似文献   
25.
Exfoliated graphite (EG) is prepared by the thermal exfoliation of graphite intercalation compounds at different temperatures. Surface and bulk physicochemical properties of EG are followed by spectroscopic and analytical methods and are observed to be a function of exfoliation temperature. EG particles can be recompressed without any binder and used as surface-renewable electrodes. Surface preparation is accomplished by either polishing or roughening the electrode surface using emery sheets. Effects of exfoliation temperature and the surface preparation on the electron-transfer kinetics and on the diffusion characteristics have been followed by electrochemical methods using several benchmark redox systems. It is found that the electron-transfer kinetics and the diffusion of K(4)[Fe(CN)(6)] are affected by the nature of the EG surface while that of iron(II)(1,10-phenanthroline)(3) and cobalt(II)(1,10-phenanthroline)(3) are not affected by the surface preparation. The redox systems are classified into different groups according to their kinetic sensitivity. Diffusion of electroactive species toward the EG electrodes is found to nonlinear. Current-time plots suggest that the recompressed EG electrodes can be modeled as fractals.  相似文献   
26.
Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are used in many engineering applications such as vehicle and industrial waste-heat recovery systems to provide electrical power, improve operating efficiency and reduce costs. State-of-art TEG manufacturing is based on prefabricated materials and a labor-intensive process involving soldering, epoxy bonding, and mechanical clamping for assembly. This reduces their durability and raises costs. Additive manufacturing technologies, such as thermal spray, present opportunities to overcome these challenges. In this work, TEGs have been fabricated for the first time using thermal spray technology and laser micromachining. The TEGs are fabricated directly onto engineering component surfaces. First, current fabrication techniques of TEGs are presented. Next, the steps required to fabricate a thermal spray-based TEG module, including the formation of the metallic interconnect layers and the thermoelectric legs are presented. A technique for bridging the air gap between two adjacent thermoelectric elements for the top layer using a sacrificial filler material is also demonstrated. A flat 50.8 mm × 50.8 mm TEG module is fabricated using this method and its performance is experimentally characterized and found to be in agreement with expected values of open-circuit voltage based on the materials used.  相似文献   
27.
A fibrous scaffold of curdlan/poly(vinyl alcohol) (PVA) blend is prepared by electrospinning technique and antimicrobial property is imparted to it by the addition of silver nitrate (1, 3, and 5 wt%). All the scaffolds except the PVA/curdlan with 5 wt% AgNO3 show good viability of Swiss 3T3 fibroblast cells. Significant reductions in the growth of Staphylococcus aureus and Escherichia coli are also observed in all the scaffolds. In vitro scratch assay and cell adhesion studies indicate that the scaffold containing 1% AgNO3 shows significant wound healing and better cell spreading. The in vivo results also show faster healing of excision wounds in diabetic rats treated with the same material when compared to the control and the commercial sample. Furthermore, downregulation of proinflammatory cytokines and upregulation of anti‐inflammatory cytokines on the skin of the treated animals confirm that PVA/curdlan/1% AgNO3 electrospun mat could be a promising material for diabetic wound healing.  相似文献   
28.
Electrochemical oxidation of sodium borohydride (NaBH4) and ammonia borane (NH3BH3) (AB) have been studied on titanium carbide electrode. The oxidation is followed by using cyclic voltammetry, chronoamperometry and polarization measurements. A fuel cell with TiC as anode and 40 wt% Pt/C as cathode is constructed and the polarization behaviour is studied with NaBH4 as anodic fuel and hydrogen peroxide as catholyte. A maximum power density of 65 mW cm−2 at a load current density of 83 mA cm−2 is obtained at 343 K in the case of borhydride-based fuel cell and a value of 85 mW cm−2 at 105 mA cm−2 is obtained in the case of AB-based fuel cell at 353 K.  相似文献   
29.
Calcium phosphate cements (CPCs) are ideally suited for the local delivery of antibiotics in infected bone defects as they have multiple binding sites for loading various drugs. CPCs can also be substituted with ions such as Ag+, Zn2+, Mg2+, Sr2+, etc., to exhibit extended broad-spectrum antimicrobial activity. Strontium (Sr) in particular is known to enhance the new bone formation and decrease bone resorption. The current work aims to develop a dual action tetracalcium phosphate (TTCP) based cement which releases both the Sr2+ ion and ornidazole antibiotic drug for the treatment of bone infections. The TTCP with Sr2+ ion substitution was prepared by the solid state reaction method and it was used to form ornidazole loaded CPC. The ornidazole loaded cement prepared using 8?at% Sr substituted TTCP (8SCPC-O) showed complete hydroxyapatite (HA) formation in phosphate buffered solution at the end of 1 week. Fine needle-shaped HA crystals were observed in 8SCPC-O cement. In vitro drug release studies showed an accelerated ornidazole release from the 8SCPC-O sample when compared to samples without Sr substitution. Ornidazole releasing cements were found to be biocompatible with skeletal myoblast (L6) cells. Antibacterial activity of ornidazole releasing cement was evident from day 1 onwards against E. coli. The above results suggest 8SCPC-O as a good candidate for treating local bone infections.  相似文献   
30.
HVOF sprayed WC based cermet coatings have been widely used in industries as barriers against wear and hydrodynamic cavitation due to their high hardness and relatively high toughness. However, cracking of the coatings can occur during coating production or in service, which can reduce operational performances. It can be difficult to assess the performance impact due to cracks within the coating and as to whether the cracked coatings should be resprayed or removed from service. In this work, artificial cracks of different widths were introduced to liquid fuel HVOF sprayed WC-12Co coating through uniaxial tension of the coated steel substrate to assess the implications of such cracking. Tribological performances of the cracked coatings were examined using rubber wheel dry abrasion, ‘ball on disc’ sliding wear, and ultrasonic cavitation erosion. The results show that the crack deteriorates the abrasive wear resistance of the coating at the initial stage due to preferable mass loss at the cracks. However, after 30?min of abrasion, all the cracked coatings showed the same wear rate as compared to the non-cracked coating, with the abrasive wear resistance acting independent to the crack characteristics. Because the cracks could store wear debris and thus minimize the debris induced abrasion to the coating surface during sliding wear test, both improvement in wear resistance and reduction in coefficient of friction (COF) were detected in the cracked coatings. During the cavitation test, it was found that the mass loss of the specimen increased significantly (up to 75%)with crack width and density suggesting that the crack presence greatly deteriorated the cavitation resistance of the cermet coatings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号