首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   11篇
  国内免费   2篇
电工技术   1篇
综合类   1篇
化学工业   68篇
金属工艺   79篇
机械仪表   4篇
建筑科学   4篇
能源动力   12篇
轻工业   16篇
水利工程   2篇
无线电   26篇
一般工业技术   80篇
冶金工业   29篇
原子能技术   1篇
自动化技术   32篇
  2024年   1篇
  2023年   6篇
  2022年   11篇
  2021年   12篇
  2020年   7篇
  2019年   9篇
  2018年   21篇
  2017年   10篇
  2016年   8篇
  2015年   8篇
  2014年   12篇
  2013年   24篇
  2012年   13篇
  2011年   24篇
  2010年   13篇
  2009年   17篇
  2008年   11篇
  2007年   12篇
  2006年   13篇
  2005年   9篇
  2004年   10篇
  2003年   6篇
  2002年   7篇
  2001年   10篇
  2000年   7篇
  1999年   4篇
  1998年   10篇
  1997年   12篇
  1996年   3篇
  1995年   10篇
  1994年   10篇
  1993年   4篇
  1992年   5篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1980年   1篇
  1978年   1篇
  1975年   3篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有355条查询结果,搜索用时 15 毫秒
81.
Present study reports the detailed nanomechanical and corrosion behaviours of crystalline and amorphous plasma electrolytic oxidation (PEO) coatings developed on Aluminium alloy-6061. The concentration of sodium silicate in the electrolyte is tailored to achieve crystalline and amorphous natures of the PEO coatings. X-ray diffraction (XRD), scanning electron microscopy (SEM) and nanoprofilometry techniques are utilized to investigate microstructural and morphological properties of the PEO coatings. XRD studies confirmed that crystalline ceramic phases are obtained at lower silicate concentration while amorphous nature occurred for comparatively higher concentration of silicate in the electrolyte. Nanoindentation technique is utilized to study the mechanical properties such as hardness (H) and Young's modulus (E) of the PEO coatings. The scatter of the data is treated with well-established Weibull statistical method. Finally, in depth corrosion behaviour of the coatings are investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. Amorphous coatings exhibited superior mechanical properties compared to the crystalline coatings. This is possibly linked with the presence of aluminosilicate phases and difference in silicon content in the coatings. However, as expected crystalline PEO coatings offer better corrosion resistance than the amorphous coatings and this behaviour is explained in terms of porosity contents of the coatings.  相似文献   
82.
Real-time curvature measurement of a coating-substrate system during deposition has facilitated the monitoring of coating stresses and provided additional insights into thermal spray deposition mechanisms. However, the non-equilibrium state of coating formation along with harsh spray booth environment introduces complexity not only in data interpretation but also in the coating properties estimation. In this paper, a new procedure is proposed to estimate the elastic modulus of thermal sprayed ceramic coatings using in situ curvature and temperature measurements. In order to correlate the measurable parameters to coating elastic modulus, a systematic study is conducted to develop a suitable methodology. First, various finite element model analyses are carried out to formulate suitable relations between the measurements and elastic modulus. Subsequently, experiments are conducted to validate the procedure to estimate coating moduli. The results are compared with more accurate measurements obtained from post-deposition characterization technique under low temperature thermal cycles. The comparison suggests that the moduli estimated using the proposed procedure are in good agreements with those obtained from the post-deposition technique. Further, the nonlinear response of coatings are evaluated from the estimated moduli during deposition and cool down, which offer additional information on the characteristics of thermal spray coatings.  相似文献   
83.
Thermal spray (TS) coatings have been extensively utilized for various surface modifications such as enhancing wear/erosion resistance and thermal protection. In the present study, a new function of TS material is explored by studying its load-carrying capability. Due to the inherent microstructures containing voids and interfaces, it has been presumed TS materials were not suitable to bear loads. However, the recent advances in TS technology to manufacture near fully dense TS coatings have expanded their potential applications. In the current experiments, TS nickel coatings are deposited onto metallic substrates, and their mechanical behaviors are closely examined. Based on the measured data, the estimated elastic modulus of TS Ni is about 130 GPa (35% less than bulk value), and the maximum tensile strength is about 500 MPa (comparable to bulk value). It was found that such a high value is attainable because the coating is deposited onto a substrate, enabling a load-transfer mechanism and preventing coating failure at a much lower stress level. Three distinct deformation stages are identified to describe this behavior. Such a clarification is critical for enabling TS process to restore structural parts as well as to additively manufacture load-bearing components.  相似文献   
84.
Armelle Vardelle  Christian Moreau  Jun Akedo  Hossein Ashrafizadeh  Christopher C. Berndt  Jörg Oberste Berghaus  Maher Boulos  Jeffrey Brogan  Athanasios C. Bourtsalas  Ali Dolatabadi  Mitchell Dorfman  Timothy J. Eden  Pierre Fauchais  Gary Fisher  Frank Gaertner  Malko Gindrat  Rudolf Henne  Margaret Hyland  Eric Irissou  Eric H. Jordan  Khiam Aik Khor  Andreas Killinger  Yuk-Chiu Lau  Chang-Jiu Li  Li Li  Jon Longtin  Nicolaie Markocsan  Patrick J. Masset  Jiri Matejicek  Georg Mauer  André McDonald  Javad Mostaghimi  Sanjay Sampath  Günter Schiller  Kentaro Shinoda  Mark F. Smith  Asif Ansar Syed  Nickolas J. Themelis  Filofteia-Laura Toma  Juan Pablo Trelles  Robert Vassen  Petri Vuoristo 《Journal of Thermal Spray Technology》2016,25(8):1376-1440
Considerable progress has been made over the last decades in thermal spray technologies, practices and applications. However, like other technologies, they have to continuously evolve to meet new problems and market requirements. This article aims to identify the current challenges limiting the evolution of these technologies and to propose research directions and priorities to meet these challenges. It was prepared on the basis of a collection of short articles written by experts in thermal spray who were asked to present a snapshot of the current state of their specific field, give their views on current challenges faced by the field and provide some guidance as to the R&D required to meet these challenges. The article is divided in three sections that deal with the emerging thermal spray processes, coating properties and function, and biomedical, electronic, aerospace and energy generation applications.  相似文献   
85.
By definition, multifunctional nanosystems include several features within a single construct so that these devices can target tumors or other disease tissue, facilitate in vivo imaging, and deliver a therapeutic agent. Investigations of these nanosystems are rapidly progressing and provide new opportunities in the management of cancer. Tumor-targeted nanosystems are currently designed based primarily on the intrinsic physico-chemical properties of off-the-shelf polymers. Following fabrication, the surfaces of these nanoscale structures are functionalized for passive or active targeted delivery to the tumors. In this Account, we describe a novel approach for the construction of multifunctional polymeric nanosystems based on combinatorial design principles. Combinatorial approaches offer several advantages over conventional methods because they allow for the integration of multiple components with varied properties into a nanosystem via self-assembly or chemical conjugation. High-throughput synthesis and screening is required in polymer design because polymer composition directly affects properties including drug loading, retention in circulation, and targeting of the nanosystems. The first approach relies on the self-assembly of macromolecular building blocks with specific functionalities in aqueous media to yield a large variety of nanoparticle systems. These self-assembled nanosystems with diverse functionalities can then be rapidly screened in a high-throughput fashion for selection of ideal formulations, or hits, which are further evaluated for safety and efficacy. In another approach, a library of a large number of polymeric materials is synthesized using different monomers. Each of the formed polymers is screened for the selection of the best candidates for nanoparticle fabrication. The combinatorial design principles allow for the selection of those nanosystems with the most favorable properties based on the type of payload, route of administration, and the desired target for imaging and delivery.  相似文献   
86.
Polybutylene terephthalate (PBT) composites were prepared with 1.0 phr synthetic wollastonite nanofibers (SWN), natural wollastonite (NW) and graphene oxide (GO) to study the effect of different fillers on mechanical, thermal, tribological, and flammability properties. The properties of PBT composites are related to the size, structure, and interfacial adhesion of the fillers in PBT matrix. PBT/SWN demonstrated the highest tensile strength and Young's modulus (6% and 9% increment), followed by PBT/NW (1.3% and 7% increment) and PBT/GO (2% decrement and 4% increment). PBT/SWN gave the highest degradation temperature (409°C), followed by PBT/GO (404.7°C). The maximum enhancement in wear resistance (73%) by PBT/SWN and anti-friction performance (26%) by PBT/GO evinced the excellent load-bearing ability of SWN and the great lubricating effect of GO. PBT/NW had the lowest peak heat release rate, smoke, and carbon dioxide production rate. This study shows that PBT composites have great potential in different automotive applications.  相似文献   
87.
Adhesion of thermal spray (TS) coatings is an important system level property in coating design and application. Adhesive-based pull testing (ASTM C633) has long been used to evaluate coating/substrate bonding. However, this approach is not always suitable for high velocity spray coatings, for example, where adhesion strengths are routinely greater than the strength of the adhesive bonding agent used in the testing. In this work, a new approach has been proposed to evaluate the adhesion of TS coatings. A systematic investigation of the effects of substrate roughness on both the uniaxial tensile yield strength and traditional bond pull adhesive strength of HVOF Ni and Ni-5wt.%Al, as well as cold-sprayed Ni-coated laminates revealed a strong correlation between these two test methodologies for the respective materials and processes. This approach allows measurement of the adhesion response even where the adhesive method is not applicable, overcoming many of the issues in the traditional ASTM C633. Analysis of cracking patterns of the coatings after 10.5% strain was used to assess the adhesion and cohesion properties. The mechanisms which determine the load transfer between the substrate and the coating are also briefly discussed.  相似文献   
88.
Fracture toughness of thermal barrier coatings (TBCs) has gained significant interest in recent years as one of the dominant design parameters dictating selection of materials and assessing durability. Much progress has been made in characterizing and understanding fracture toughness of relevant TBC compositions in their bulk form, but it is also apparent that the toughness is significantly affected by process‐induced microstructural defects. In this investigation, a systematic study of the influence of coating microstructure on the fracture toughness of atmospheric plasma‐sprayed TBCs has been carried out. Yttria partially stabilized zirconia (YSZ) coatings were fabricated under different process conditions inducing different levels of porosity and defect densities. Fracture toughness was measured on free‐standing coatings in as‐processed and thermally aged conditions using the double torsion technique. Results indicate significant variance in fracture toughness among coatings with different microstructures including changes induced by thermal aging. Comparative studies were also conducted on an alternative composition, Gd2Zr2O7 which, as anticipated, shows significantly lower fracture toughness compared to YSZ. The results not only point toward a need for process and microstructure optimization for enhancing TBC performance, but also a framework for establishing performance metrics for promising new TBC compositions.  相似文献   
89.
In this article, a compact 2 element UWB MIMO antenna is proposed. It has a compact size of 40 mm × 20 mm (800 mm2). The antenna utilizes hybrid Sierpinski Koch fractal shape as the radiating element. The antenna elements are placed parallel and close to each other. The isolation between the antenna elements is increased by employing a modified stepped ground plane and a reflecting ground stub. The use of stub results in pattern diversity. A U‐ Shaped slot is etched in the radiating element to notch the WLAN band that interferes with UWB. The antenna performance is measured in terms of S‐parameter, radiation pattern and diversity performance. Considering S11 < ?10 dB, the antenna offers an acceptable impedance bandwidth from 2.5 to 11 GHz, with an isolation better than 20 dB over the UWB range. It has a stable omnidirectional pattern. In terms of diversity performance, the antenna has an envelope correlation coefficient (ECC) of <0.1 and capacity loss of <0.1 bps/Hz. The channel capacity of the antenna in the outdoor environment is obtained using Wireless Insite. The channel capacity is found to be 2 Gb/s. The proposed antenna thus can be a good candidate for portable UWB application.  相似文献   
90.
Bone morphogenetic proteins induce chondrogenesis and osteogenesis in vivo. To investigate molecular mechanisms involved in chondrocyte induction, we examined the effect of osteogenic protein (OP)-1/bone morphogenetic protein-7 on the collagen X promoter. In rat calvaria-derived chondrogenic C5.18 cells, OP-1 up-regulates collagen X mRNA levels and its promoter activity in a cell type- specific manner. Deletion analysis localizes the OP-1 response region to 33 bp (-310/-278), which confers OP-1 responsiveness to both the minimal homologous and heterologous Rous sarcoma virus promoter. Transforming growth factor-beta2 or activin, which up-regulates the expression of a transforming growth factor-beta-inducible p3TP-Lux construct, has little effect on collagen X mRNA and on this 33-bp region. Mutational analysis shows that both an AP-1 like sequence (-294/-285, TGAATCATCA) and an A/T-rich myocyte enhancer factor (MEF)-2 like sequence (-310/-298, TTAAAAATAAAAA) in the 33-bp region are necessary for the OP-1 effect. Gel shift assays show interaction of distinct nuclear proteins from C5.18 cells with the AP-1-like and the MEF-2-like sequences. OP-1 rapidly induces nuclear protein interaction with the MEF-2-like sequence but not with the AP-1 like sequence. MEF-2-like binding activity induced by OP-1 is distinct from the MEF-2 family proteins present in C2C12 myoblasts, in which OP-1 does not induce collagen X mRNA or up-regulate its promoter activity. In conclusion, we identified a specific response region for OP-1 in the mouse collagen X promoter. Mutational and gel shift analyses suggest that OP-1 induces nuclear protein interaction with an A/T-rich MEF-2 like sequence, distinct from the MEF-2 present in myoblasts, and up-regulates collagen X promoter activity, which also requires an AP-1 like sequence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号