首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48142篇
  免费   13361篇
  国内免费   89篇
电工技术   900篇
技术理论   1篇
综合类   95篇
化学工业   19416篇
金属工艺   750篇
机械仪表   1408篇
建筑科学   1829篇
矿业工程   45篇
能源动力   1276篇
轻工业   7681篇
水利工程   330篇
石油天然气   166篇
武器工业   10篇
无线电   8041篇
一般工业技术   13178篇
冶金工业   1010篇
原子能技术   128篇
自动化技术   5328篇
  2024年   20篇
  2023年   147篇
  2022年   205篇
  2021年   578篇
  2020年   1663篇
  2019年   3365篇
  2018年   3344篇
  2017年   3666篇
  2016年   4136篇
  2015年   4151篇
  2014年   4249篇
  2013年   5531篇
  2012年   3363篇
  2011年   3113篇
  2010年   3189篇
  2009年   3085篇
  2008年   2601篇
  2007年   2275篇
  2006年   1988篇
  2005年   1689篇
  2004年   1617篇
  2003年   1601篇
  2002年   1473篇
  2001年   1283篇
  2000年   1247篇
  1999年   656篇
  1998年   230篇
  1997年   189篇
  1996年   159篇
  1995年   94篇
  1994年   114篇
  1993年   86篇
  1992年   72篇
  1991年   69篇
  1990年   50篇
  1989年   38篇
  1988年   26篇
  1987年   23篇
  1986年   20篇
  1985年   38篇
  1984年   23篇
  1983年   16篇
  1982年   9篇
  1981年   15篇
  1980年   15篇
  1979年   14篇
  1978年   7篇
  1977年   9篇
  1976年   11篇
  1974年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Rhenium disulfide (ReS2) differs fundamentally from other group‐VI transition metal dichalcogenides (TMDs) due to its low structural symmetry, which results in its optical and electrical anisotropy. Although vertical growth is observed in some TMDs under special growth conditions, vertical growth in ReS2 is very different in that it is highly spontaneous and substrate‐independent. In this study, the mechanism that underpins the thermodynamically favorable vertical growth mode of ReS2 is uncovered. It is found that the governing mechanism for ReS2 growth involves two distinct stages. In the first stage, ReS2 grows parallel to the growth substrate, consistent with conventional TMD growth. However, subsequent vertical growth is nucleated at points on the lattice where Re atoms are “pinched” together. At such sites, an additional Re atom binds with the cluster of pinched Re atoms, leaving an under‐coordinated S atom protruding out of the ReS2 plane. This under‐coordinated S is “reactive” and binds to free Re and S atoms, initiating growth in a direction perpendicular to the ReS2 surface. The utility of such vertical ReS2 arrays in applications where high surface‐to‐volume ratio and electric‐field enhancement are essential, such as surface enhanced Raman spectroscopy, field emission, and solar‐based disinfection of bacteria, is demonstrated.  相似文献   
992.
The photovoltaic and electrical properties of organic semiconductors are characterized by their low dielectric constant, which leads to the formation of polarons and Frenkel excitons. The low dielectric constant of organic semiconductors has been suggested to be significantly influential in geminate and bimolecular recombination losses in organic photovoltaics (OPVs). However, despite the critical attention that the dielectric constant has received in literature discussions, there has not yet been a thorough study of the dielectric constant in common organic semiconductors and how it changes when blended. In fact, there have been some inconsistent and contradictory reports on such dielectric constants, making it difficult to identify trends. Herein, at first a detailed explanation of a specific methodology to determine the dielectric constant in OPV materials with impedance spectroscopy is provided, including guidelines for possible experimental pitfalls. Using this methodology, the analysis for the dielectric constant of 17 common neat organic semiconductors is carried out. Furthermore, the relationship between the dielectric constant and blend morphology are studied and determined. It is found that the dielectric constant of a blend system can be very accurately predicted solely based on the dielectric constants of the neat materials, scaled by their respective weight ratios in the blend film.  相似文献   
993.
Ceramic–polymer composites are of interest for designing enhanced and unique properties. However, the processing temperature windows of sintering ceramics are much higher than that of compaction, extrusion, or sintering of polymers, and thus traditionally there has been an inability to cosinter ceramic–polymer composites in a single step with high amounts of ceramics. The cold sintering process is a low‐temperature sintering technology recently developed for ceramics and ceramic‐based composites. A wide variety of ceramic materials have now been demonstrated to be densified under the cold sintering process and therefore can be all cosintered with polymers from room temperature to 300 °C. Here, the status, understanding, and application of cold cosintering, with different examples of ceramics and polymers, are discussed. One has to note that these types of cold sintering processes are yet new, and a full understanding will only emerge after more ceramic–polymer examples emerge and different research groups build upon these early observations. The general processing, property designs, and an outlook on cold sintering composites are outlined. Ultimately, the cold sintering process could open up a new multimaterial design space and impact the field of ceramic–polymer composites.  相似文献   
994.
Detailed analysis of the microstructural changes during lithiation of a full‐concentration‐gradient (FCG) cathode with an average composition of Li[Ni0.75Co0.10Mn0.15]O2 is performed starting from its hydroxide precursor, FCG [Ni0.75Co0.10Mn0.15](OH)2 prior to lithiation. Transmission electron microscopy (TEM) reveals that a unique rod‐shaped primary particle morphology and radial crystallographic texture are present in the prelithiation stage. In addition, TEM detected a two‐phase structure consisting of MnOOH and Ni(OH)2, and crystallographic twins of MnOOH on the Mn‐rich precursor surface. The formation of numerous twins is driven by the lattice mismatch between MnOOH and Ni(OH)2. Furthermore, the twins persist in the lithiated cathode; however, their density decrease with increasing lithiation temperature. Cation disordering, which influences cathode performance, is observed to continuously decrease with increasing lithiation temperature with a minimum observed at 790 °C. Consequently, lithiation at 790 °C (for 10 h) produced optimal discharge capacity and cycling stability. Above 790 °C, an increase in cation disordering and excessive coarsening of the primary particles lead to the deterioration of electrochemical properties. The twins in the FCG cathode precursor may promote the optimal primary particle morphology by retarding the random coalescence of primary particles during lithiation, effectively preserving both the morphology and crystallographic texture of the precursor.  相似文献   
995.
996.
997.
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号