首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62885篇
  免费   1649篇
  国内免费   258篇
电工技术   978篇
技术理论   1篇
综合类   191篇
化学工业   11843篇
金属工艺   2210篇
机械仪表   3319篇
建筑科学   1359篇
矿业工程   96篇
能源动力   2427篇
轻工业   4426篇
水利工程   294篇
石油天然气   331篇
武器工业   11篇
无线电   10915篇
一般工业技术   12399篇
冶金工业   5949篇
原子能技术   665篇
自动化技术   7378篇
  2024年   564篇
  2023年   674篇
  2022年   920篇
  2021年   1665篇
  2020年   1311篇
  2019年   1357篇
  2018年   1472篇
  2017年   1466篇
  2016年   1882篇
  2015年   1431篇
  2014年   2229篇
  2013年   3736篇
  2012年   3432篇
  2011年   4171篇
  2010年   3206篇
  2009年   3379篇
  2008年   3140篇
  2007年   2593篇
  2006年   2393篇
  2005年   2087篇
  2004年   1982篇
  2003年   1821篇
  2002年   1725篇
  2001年   1378篇
  2000年   1280篇
  1999年   1279篇
  1998年   2268篇
  1997年   1492篇
  1996年   1267篇
  1995年   997篇
  1994年   765篇
  1993年   698篇
  1992年   503篇
  1991年   506篇
  1990年   432篇
  1989年   420篇
  1988年   326篇
  1987年   280篇
  1986年   258篇
  1985年   235篇
  1984年   206篇
  1983年   156篇
  1982年   155篇
  1981年   134篇
  1980年   130篇
  1979年   105篇
  1978年   95篇
  1977年   125篇
  1976年   158篇
  1975年   80篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
After spinal cord injury (SCI) in mammals, neuronal regeneration is limited; in contrast, such regeneration occurs quickly in zebrafish. Member A of the acidic nuclear phosphoprotein 32 (ANP32a) family is involved in neuronal development, but its function is controversial, and its involvement in zebrafish SCI remains unknown. To determine the role of zebrafish ANP32a in the neuronal regeneration of SCI embryos, we microinjected ANP32a mRNA into embryos from zebrafish transgenic line Tg(mnx1:GFP) prior to SCI. Compared to control SCI embryos, the results showed that the regeneration of spinal cord and resumption of swimming capability were promoted by the overexpression of ANP32a mRNA but reduced by its knockdown. We next combined fluorescence-activated cell sorting with immunochemical staining of anti-GFAP and immunofluorescence staining against anti-PH3 on Tg(gfap:GFP) SCI embryos. The results showed that ANP32a promoted the proliferation and cell number of radial glial cells at the injury epicenter at 24 h post-injury (hpi). Moreover, when we applied BrdU labeling to SCI embryos derived from crossing the Tg(gfap:GFP) and Tg(mnx1:TagRFP) lines, we found that both radial glial cells and motor neurons had proliferated, along with their increased cell numbers in Anp32a-overexpression SCI-embryos. On this basis, we conclude that ANP32a plays a positive role in the regeneration of zebrafish SCI embryos.  相似文献   
62.
63.
This paper presents design and simulation of a switchable radiative cooler that exploits phase transition in vanadium di-oxide to turn on and off in response to...  相似文献   
64.
Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach for diverse diseases and injuries. The biological and clinical advantages of human fetal MSCs (hfMSCs) have recently been reported. In terms of promising therapeutic approaches for diverse diseases and injuries, hfMSCs have gained prominence as healing tools for clinical therapies. Therefore, this review assesses not the only biological advantages of hfMSCs for healing human diseases and regeneration, but also the research evidence for the engraftment and immunomodulation of hfMSCs based on their sources and biological components. Of particular clinical relevance, the present review also suggests the potential therapeutic feasibilities of hfMSCs for musculoskeletal disorders, including osteoporosis, osteoarthritis, and osteogenesis imperfecta.  相似文献   
65.
Activity-based monitoring of cell-secreted proteases has gained significant interest due to the implication of these substances in diverse cellular functions. Here, we demonstrated a cell-based method of monitoring protease activity using fluorescent cell-permeable peptides. The activatable peptide consists of anionic (EEEE), cleavable, and cationic sequences (RRRR) that enable intracellular delivery by matrix metalloproteinase-2 (MMP2), which is secreted by living cancer cells. Compared to HT-29 cells (MMP2-negative), HT-1080 cells (MMP2-positive) showed a strong fluorescence response to the short fluorescent peptide via cell-secreted protease activation. Our approach is expected to find applications for the rapid visualization of protease activity in living cells.  相似文献   
66.
67.
Osteoarthritis (OA) has generally been introduced as a degenerative disease; however, it has recently been understood as a low-grade chronic inflammatory process that could promote symptoms and accelerate the progression of OA. Current treatment strategies, including corticosteroid injections, have no impact on the OA disease progression. Mesenchymal stem cells (MSCs) based therapy seem to be in the spotlight as a disease-modifying treatment because this strategy provides enlarged anti-inflammatory and chondroprotective effects. Currently, bone marrow, adipose derived, synovium-derived, and Wharton’s jelly-derived MSCs are the most widely used types of MSCs in the cartilage engineering. MSCs exert immunomodulatory, immunosuppressive, antiapoptotic, and chondrogenic effects mainly by paracrine effect. Because MSCs disappear from the tissue quickly after administration, recently, MSCs-derived exosomes received the focus for the next-generation treatment strategy for OA. MSCs-derived exosomes contain a variety of miRNAs. Exosomal miRNAs have a critical role in cartilage regeneration by immunomodulatory function such as promoting chondrocyte proliferation, matrix secretion, and subsiding inflammation. In the future, a personalized exosome can be packaged with ideal miRNA and proteins for chondrogenesis by enriching techniques. In addition, the target specific exosomes could be a gamechanger for OA. However, we should consider the off-target side effects due to multiple gene targets of miRNA.  相似文献   
68.
Adipocytic tumors are the most common subtype of soft tissue tumors. In current clinical practice, distinguishing benign lipomas from well-differentiated liposarcomas (WDLPS), as well as dedifferentiated liposarcomas (DDLPS) from their morphologic mimics, remains a significant diagnostic challenge. This is especially so when examining small biopsy samples and without the aid of additional ancillary tests. Recognizing the important role that microRNAs (miRNAs) play in tumorigenesis and their potential utility in tumor classification, we analyzed routine clinical tissue samples of benign and malignant lipomatous tumors, as well as other sarcoma mimics, to identify distinguishing miRNA-based signatures that can aid in the differential diagnosis of these entities. We discovered a 6-miRNA signature that separated lipomas from WDLPS with high confidence (AUC of 0.963), as well as a separate 6-miRNA signature that distinguished DDLPS from their more aggressive histologic mimics (AUC of 0.740). Functional enrichment analysis unveiled possible mechanistic involvement of these predictive miRNAs in adipocytic cancer-related biological processes and pathways such as PI3K/AKT/mTOR and MAPK signaling, further supporting the relevance of these miRNAs as biomarkers for adipocytic tumors. Our results demonstrate that miRNA expression profiling may potentially be used as an adjunctive tool for the diagnosis of benign and malignant adipocytic tumors. Further validation studies are warranted.  相似文献   
69.
Catechol is a ubiquitous chemical used in the manufacturing of fragrances, pharmaceuticals and flavorants. Environmental exposure occurs in a variety of ways through industrial processes, during pyrolysis and in effluent, yet despite its prevalence, there is limited information regarding its toxicity. While the genotoxicity and gastric carcinogenicity of catechol have been described in depth, toxicological studies have potentially overlooked a number of other effects relevant to humans. Here, we have made use of a general and behavioral larval zebrafish toxicity assay to describe previously unknown catechol-based toxicological phenomena. Behavioral testing revealed catechol-induced hypoactivity at concentrations an order of magnitude lower than observable endpoints. Catechol exposure also resulted in punctate melanocytes with concomitant decreases in the expression of pigment production and regulation markers mitfa, mc1r and tyr. Because catechol is converted into a number of toxic metabolites by tyrosinase, an enzyme found almost exclusively in melanocytes, an evaluation of the effects of catechol on these cells is critical to evaluating the safety of this chemical. This work provides insights into the toxic nature of catechol and highlights the benefits of the zebrafish larval testing platform in being able to dissect multiple aspects of toxicity with one model.  相似文献   
70.
The CRISPR/Cas9 site-directed gene-editing system offers great advantages for identifying gene function and crop improvement. The circadian clock measures and conveys day length information to control rhythmic hypocotyl growth in photoperiodic conditions, to achieve optimal fitness, but operates through largely unknown mechanisms. Here, we generated core circadian clock evening components, Brassica rapa PSEUDO-RESPONSE REGULATOR (BrPRR) 1a, 1b, and 1ab (both 1a and 1b double knockout) mutants, using CRISPR/Cas9 genome editing in Chinese cabbage, where 9–16 genetic edited lines of each mutant were obtained. The targeted deep sequencing showed that each mutant had 2–4 different mutation types at the target sites in the BrPRR1a and BrPRR1b genes. To identify the functions of BrPRR1a and 1b genes, hypocotyl length, and mRNA and protein levels of core circadian clock morning components, BrCCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) and BrLHY (LATE ELONGATED HYPOCOTYL) a and b were examined under light/dark cycles and continuous light conditions. The BrPRR1a and 1ab double mutants showed longer hypocotyls, lower core circadian clock morning component mRNA and protein levels, and a shorter circadian rhythm than wildtype (WT). On the other hand, the BrPRR1b mutant was not significantly different from WT. These results suggested that two paralogous genes may not be associated with the same regulatory function in Chinese cabbage. Taken together, our results demonstrated that CRISPR/Cas9 is an efficient tool for achieving targeted genome modifications and elucidating the biological functions of circadian clock genes in B. rapa, for both breeding and improvement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号