首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2309篇
  免费   80篇
  国内免费   9篇
电工技术   35篇
综合类   3篇
化学工业   483篇
金属工艺   123篇
机械仪表   72篇
建筑科学   44篇
矿业工程   2篇
能源动力   128篇
轻工业   90篇
水利工程   30篇
石油天然气   8篇
无线电   356篇
一般工业技术   522篇
冶金工业   136篇
原子能技术   11篇
自动化技术   355篇
  2024年   8篇
  2023年   48篇
  2022年   79篇
  2021年   97篇
  2020年   90篇
  2019年   89篇
  2018年   121篇
  2017年   104篇
  2016年   96篇
  2015年   71篇
  2014年   119篇
  2013年   197篇
  2012年   111篇
  2011年   132篇
  2010年   121篇
  2009年   113篇
  2008年   83篇
  2007年   86篇
  2006年   66篇
  2005年   53篇
  2004年   38篇
  2003年   39篇
  2002年   34篇
  2001年   34篇
  2000年   32篇
  1999年   32篇
  1998年   33篇
  1997年   28篇
  1996年   32篇
  1995年   30篇
  1994年   25篇
  1993年   31篇
  1992年   18篇
  1991年   21篇
  1990年   12篇
  1989年   9篇
  1988年   9篇
  1987年   9篇
  1986年   9篇
  1985年   7篇
  1984年   3篇
  1983年   5篇
  1981年   4篇
  1980年   6篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   4篇
  1970年   3篇
  1968年   1篇
排序方式: 共有2398条查询结果,搜索用时 15 毫秒
61.
Porous conducting carbon fiber‐based composite paper is used as an electrode backing in the fuel cell assembly. It not only acts as a channel through which the reactant and product gases pass to and from the bipolar plate and the catalyst site but also helps in the flow of electrons. In order to perform its role efficiently, it should have sufficient strength, high electrical conductivity, and ideal porous structure. Carbon paper has been fabricated, which builds up the required composite properties. Studies have been conducted to optimize the fiber/matrix ratio in the carbon paper, while ensuring the perfect combination of porosity, mechanical strength, and electrical conductivity for an electrode in a proton electrolyte membrane fuel cells. Detail physico‐mechanical and electrochemical characterizations further ascertain that the fiber/matrix ratio plays an important role in tuning the composite properties. The polarization curve of the unit proton exchange membrane (PEM) fuel cell (with an effective electrode area 4 cm2) shows a peak power density of 916 mW/cm2 for the sample with fiber/matrix ratio of 65:35, which is almost the same as the commercially available sigracet gas diffusion layer (SGL) carbon paper tested under similar conditions. Further, proportionally enlarging the electrode area to 100 cm2 shows that the carbon paper not only shows almost repeatable results in a given set up but also scales up.  相似文献   
62.
Wireless Personal Communications - Femtocell deployment is an important strategy when it comes to improvement of QoS metrics in areas of poor cell coverage like indoors in an LTE environment. This,...  相似文献   
63.
Journal of Failure Analysis and Prevention - Wire rope is an important part of any crane. Failure of wire rope may lead to major loss in terms of life and cost. Wire rope failures are attributed by...  相似文献   
64.
Magnesium based hybrid composites containing nano-sized silicon carbide and carbon nanotubes reinforcements with minimal porosity were successfully fabricated using powder metallurgy technique with microwave sintering and hot extrusion. It was found that the addition of nano-sized silicon carbide and carbon nanotubes reinforcements lowered the coefficient of thermal expansion of magnesium. Moreover, increasing presence of silicon carbide particles led to a progressive reduction in coefficient of thermal expansion for a constant overall amount of reinforcements indicating that carbon nanotubes lowered the coefficient of thermal expansion to a lesser extent when compared to silicon carbide. Micro-hardness, 0.2% YS and UTS (except for Mg+1%CNT) showed improvement, while failure strain decreased when nano-sized silicon carbide and carbon nanotubes were added to magnesium. The failure mode of magnesium and magnesium composites was predominantly brittle exhibiting the presence of cleavage steps.  相似文献   
65.
We demonstrate ultra-thin (<150 nm) Si1−x Ge x dislocation blocking layers on Si substrates used for the fabrication of tensile-strained Si N channel metal oxide semiconductor (NMOS) and Ge P channel metal oxide semiconductor (PMOS) devices. These layers were grown using ultra high vacuum chemical vapor deposition (UHVCVD). The Ge mole fraction was varied in rapid, but distinct steps during the epitaxial layer growth. This results in several Si1−x Ge x interfaces in the epitaxially grown material with significant strain fields at these interfaces. The strain fields enable a dislocation blocking mechanism at the Si1−x Ge x interfaces on which we were able to deposit very smooth, atomically flat, tensile-strained Si and relaxed Ge layers for the fabrication of high mobility N and P channel metal oxide semiconductor (MOS) devices, respectively. Both N and P channel metal oxide semiconductor field effect transister (MOSFETs) were successfully fabricated using high-k dielectric and metal gates on these layers, demonstrating that this technique of using ultra-thin dislocation blocking layers might be ideal for incorporating high mobility channel materials in a conventional CMOS process.  相似文献   
66.
HVOF sprayed WC based cermet coatings have been widely used in industries as barriers against wear and hydrodynamic cavitation due to their high hardness and relatively high toughness. However, cracking of the coatings can occur during coating production or in service, which can reduce operational performances. It can be difficult to assess the performance impact due to cracks within the coating and as to whether the cracked coatings should be resprayed or removed from service. In this work, artificial cracks of different widths were introduced to liquid fuel HVOF sprayed WC-12Co coating through uniaxial tension of the coated steel substrate to assess the implications of such cracking. Tribological performances of the cracked coatings were examined using rubber wheel dry abrasion, ‘ball on disc’ sliding wear, and ultrasonic cavitation erosion. The results show that the crack deteriorates the abrasive wear resistance of the coating at the initial stage due to preferable mass loss at the cracks. However, after 30?min of abrasion, all the cracked coatings showed the same wear rate as compared to the non-cracked coating, with the abrasive wear resistance acting independent to the crack characteristics. Because the cracks could store wear debris and thus minimize the debris induced abrasion to the coating surface during sliding wear test, both improvement in wear resistance and reduction in coefficient of friction (COF) were detected in the cracked coatings. During the cavitation test, it was found that the mass loss of the specimen increased significantly (up to 75%)with crack width and density suggesting that the crack presence greatly deteriorated the cavitation resistance of the cermet coatings.  相似文献   
67.
Membrane proteins are involved in a number of important biological functions. Yet, they are poorly understood from the structure and folding point of view. The external environment being drastically different from that of globular proteins, the intra-protein interactions in membrane proteins are also expected to be different. Hence, statistical potentials representing the features of inter-residue interactions based exclusively on the structures of membrane proteins are much needed. Currently, a reasonable number of structures are available, making it possible to undertake such an analysis on membrane proteins. In this study we have examined the inter-residue interaction propensities of amino acids in the membrane spanning regions of the alpha-helical membrane (HM) proteins. Recently we have shown that valuable information can be obtained on globular proteins by the evaluation of the pair-wise interactions of amino acids by classifying them into different structural environments, based on factors such as the secondary structure or the number of contacts that a residue can make. Here we have explored the possible ways of classifying the intra-protein environment of HM proteins and have developed scoring functions based on different classification schemes. On evaluation of different schemes, we find that the scheme which classifies amino acids to different intra-contact environment is the most promising one. Based on this classification scheme, we also redefine the hydrophobicity scale of amino acids in HM proteins.  相似文献   
68.
In the present study, varying amounts of tetramethylguanidinium moiety have been conjugated to linear polyethylenimine to obtain linear polyethylenimine-tmg (LPTG) polymers. Incorporation of hydrophobic and highly basic moiety in the polymeric backbone resulted in the significant improvement in the antibacterial activity which was confirmed by zone of inhibition and MIC assays. Further, the results of transmission electron microscopy and confocal studies revealed that the projected LPTG polymers possessed higher antibacterial activity than the native polymer. In addition, these modified polyethylenimine (PEI) polymers were capable of reducing auric chloride into stable gold nanoparticles. These polyamine-stabilized gold nanoparticles can be used in various biomedical applications.  相似文献   
69.
Natural fiber‐reinforced nanocomposites based on polypropylene/nanoclay/banana fibers were fabricated by melt mixing in a twin‐screw extruder followed by compression molding in this current study. Maleic anhydride polypropylene copolymer (MA‐g‐PP) was used as a compatibilizer to increase the compatibility between the PP matrix, clay, and banana fiber to enhance exfoliation of organoclay and dispersion of fibers into the polymer matrix. Variation in mechanical, thermal, and physico‐mechanical properties with the addition of banana fiber into the PP nanocomposites was investigated. It was observed that 3 wt% of nanoclay and 5 wt% of MA‐g‐PP within PP matrix resulted in an increase in tensile and flexural strength by 41.3% and 45.6% as compared with virgin PP. Further, incorporation of 30 wt% banana fiber in PP nanocomposites system increases the tensile and flexural strength to the tune of 27.1% and 15.8%, respectively. The morphology of fiber reinforced PP nanocomposites has been examined by using scanning electron microscopy and transmission electron microscopy. Significant enhancement in the thermal stability of nanocomposites was also observed due to the presence of nanoclay under thermogravimetric analysis. Dynamic mechanical analysis tests revealed an increase in storage modulus (E′) and damping factor (tan δ), conforming the strong interaction between nanoclay/banana fiberand MA‐g‐PP in the fiber‐reinforced nanocomposites systems. POLYM. COMPOS., © 2011 Society of Plastics Engineers.  相似文献   
70.
The product‐based recycling of the electrical and electronic devices and their by‐products are limited due to their complex characteristics and dissimilar material characteristics. However, such recycling procedures give clear ideas about the composition and possible recycling options of the materials present in them. Consequently, the present study deals with isolation and recycling of the major polymeric fraction present in the waste computer power supply cables (CPS) and electrical power supply (EPS) wires isolated from the household items. The composition analysis of CPS and EPS indicates that the poly(vinyl chloride) (PVC) is the major polymeric fraction along with minor content of polyethylene (PE) and polycarbonate (PC). Further, this research compares the mechanical recyclability of the PVC recovered from the CPS and EPS. Among the PVC's analyzed, PVC isolated from the EPS has been indicated superior mechanical properties. Similarly, thermal degradation analysis (TGA) indicated higher thermal stability for the PVC isolated from EPS. Besides, the flammability of the PVC specimens was studied and concluded with the possible mechanism occurring during combustion. Moreover, this study points out that PVC recovered from EPS and CPS can be mechanically recycled for the elimination of the waste. J. VINYL ADDIT. TECHNOL., 26:213–223, 2020. © 2019 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号