Double diffusive mixed convection in a horizontal channel with backward facing step is analyzed using velocity-vorticity formulation with a focus on the effect of recirculatory flow pattern on convective heat and mass transfer. The governing equations consist of vorticity transport equation with thermal and solutal buoyancy force terms, velocity Poisson equations, energy equation, and solutal concentration equation. Galerkin's weighted residual finite-element method has been employed to solve the equations for vorticity, velocity, temperature, and concentration fields in the computational domain. Test results are obtained to study the effect of thermal Grashof number (GrT), solutal Grashof number (GrS), and expansion ratio on the average Nusselt and Sherwood numbers. Results indicate that the convective heat transfer increased with increase in GrT only when the GrS number is in the aiding mode. The maximum local Nusselt number is always observed to be located adjacent to the downstream of the fluid reattachment point. Using the matched method of asymptotic expansions, correlations have also been developed for average Nusselt and Sherwood numbers for both cases of aiding and opposing buoyancy forces. 相似文献
Co based catalyst were evaluated for oxygen reduction (ORR) in liquid KOH and alkaline anion exchange membrane fuel cells (AAEMFCs). In liquid KOH solution the catalyst exhibited good performance with an onset potential 120 mV more negative than platinum and a Tafel slope of ca. 120 mV dec−1. The hydrogen peroxide generated, increased from 5 to 50% as the electrode potential decreased from 175 to −300 mV vs. SHE.In an AAEMFC environment, one catalyst (GP2) showed promising performance for ORR, i.e. at 50 mA cm−2 the differences in cell potential between the stable performance for platinum (more positive) and cobalt cathodes with air and oxygen, were only 45 and 67 mV respectively. The second catalyst (GP4) achieved the same stable power density as with platinum, of 200 and 145 mW cm−2, with air at 1 bar (gauge) pressure and air (atm) cathode feed (60 °C), respectively. However the efficiency was lower (i.e. cell voltage was lower) i.e. 40% in comparison to platinum 47.5%. 相似文献
In this work, the melting and solidification behaviour of paraffin phase change material encapsulated in a stainless steel spherical container has been studied experimentally. A computational fluid dynamics analysis has also been performed for the encapsulated phase change material (PCM) during phase change process. In the melting process, the hot air, used as the heat transfer fluid enters the test section and flows over the spherical capsule resulting in the melting of phase change material. In the solidification process, the ambient air flows over the capsule and received heat from phase change material resulting in the solidification of phase change material. In the computational fluid dynamics, the constant wall boundary condition is employed for both melting (75°C) and solidification (36°C) processes since the internal conductive resistance offered by the PCM is much higher compared to the outer surface convective resistance. The time required for complete solidification and melting of the phase change material obtained from the computational fluid dynamics analysis are validated with the experimental results and a reasonable agreement is achieved. The reason for the deviation between the results are analyzed and reported. 相似文献
A concentrated solar absorber with finned phase change materials was experimentally studied using a Scheffler type parabolic dish concentrator. The absorber's inner surface was fixed with hollow cylindrical containers filled with phase change material (PCM) for heat transfer augmentation. The absorber's selected PCM was acetanilide (Melting point of 116 °C)—the cylindrical capsules protruding into the fluid side to create turbulence and mixing and acting as fins. The absorber surface temperature was observed to be about 130–150 °C during the outdoor tests while passing fluid through the absorber. The fluid flow rate varied from 60 to 100 kg/h during the outdoor experiments. The peak energy and exergy efficiency of parabolic dish collector (PDC) at the fluid flow rate of 80 kg/h with PCM integrated solar absorber was found to be about 67.88% and 6.96%, respectively. The integration of cylindrical PCM containers resulted in more heat transfer augmentation in the solar absorbers. The optimized solar absorber could be suitable for various applications like steam generation, biomass gasification, space heating, and hydrogen generation. 相似文献
Gas diffusion layer (GDL) is subjected to compressive stress at high temperature along with polymer electrolyte membrane in the fabrication process and in assembling the fuel cell stacks. Compressive stress decreases the thickness of GDL, electrical conductivity, permeability, and affects the pores. Carbon cloth based GDL withstands higher strain level when compared to carbon paper and the pore structure is also disrupted to a greater extent in cloth based GDL. In the present paper, we have addressed the effects of stress on pore structure of cloth based GDL. An optimum GDL must offer low mass transport resistance in an operating PEM fuel cell. The pore size analysis of pristine GDL and GDLs pressed at different pressure levels (200, 600 & 1000 kg cm−2) and their characteristics are evaluated using capillary flow porometry. The compressive stress affects the three types of pores in GDL called bubble point pore, mean flow pore and smallest pore. The change in electrical resistance, wetting behavior and surface morphology is also examined as a function of compressive stress. The fuel cell performances using these GDLs pressed at different compressive stresses are also evaluated and presented. The highest PEMFC performance is achieved at a compressive stress of 200 kg cm−2, which could be attributed to the combined effect of reduced ohmic resistance and optimized pore structure. The order of increasing performance in terms of current density is observed to be j200 > jPristine > j600 > j1000 at 0.15 V. The thicknesses and pore sizes of custom made GDL for optimum fuel cell performance are recommended. 相似文献
This article presents a hybrid model involving artificial neural networks and biogeography-based optimization for long-term forecasting of India's sector-wise electrical energy demand. It involves socio-economic indicators, such as population and per capita gross domestic product, and uses two artificial neural networks, which are trained through a biogeography-based optimization algorithm with a goal of perfect mapping of the input–output data in the non-linear space through obtaining the global best weight parameters. The biogeography-based optimization based training of the artificial neural network improves the forecasting accuracy and avoids trapping in local optima besides enhancing the convergence to the lowest mean squared error at the minimum number of iterations than existing approaches. The model requires an input and the year of the forecast and predicts the sector-wise energy demand. Forecasts up to the year 2025 are compared with those of the regression model, the artificial neural network model trained by back-propagation, and the artificial neural network model trained by harmony search algorithm to exhibit its effectiveness. 相似文献
Model predictive control (MPC) schemes are now widely used in process industries for the control of key unit operations. Linear model predictive control (LMPC) schemes which make use of linear dynamic model for prediction, limit their applicability to a narrow range of operation (or) to systems which exhibit mildly nonlinear dynamics.
In this paper, a nonlinear observer based model predictive controller (NMPC) for nonlinear system has been proposed. An approach to design NMPC based on fuzzy Kalman filter (FKF) and augmented state fuzzy Kalman filter (ASFKF) has been presented. The efficacy of the proposed NMPC schemes have been demonstrated by conducting simulation studies on the continuous stirred tank reactor (CSTR). The analysis of the extensive dynamic simulation studies revealed that, the NMPC schemes formulated produces satisfactory performance for both servo and regulatory problems. Simulation results also include an inferential control case, where the reactor concentration is not measured but estimated from temperature measurement and used in the NMPC based on FKF and ASFKF formulations. 相似文献
Fabrication of two and three‐dimensional nanostructures requires the development of new methodologies for the assembly of molecular/macromolecular objects on substrates in predetermined arrangements. Templated self‐assembly approach is a powerful strategy for the creation of materials from assembly of molecular components or nanoparticles. The present study describes the development of a facile, template directed self‐assembly of (metal/organic) nanomaterials into periodic micro‐ and nanostructures. The positioning and the organization of nanomaterials into spatially well‐defined arrays were achieved using an amphiphilic conjugated polymer‐aided, self‐organization process. Arrays of honeycomb patterns formed from conjugated C12PPPOH film with homogenous distribution of metal/organic nanomaterials. Our approach offers a straightforward and inexpensive method of preparation for hybrid thin films without environmentally controlled chambers or sophisticated instruments as compared to multistep micro‐fabrication techniques. 相似文献
Fast battery charging units act as non-linear loads, which induce a more harmonic effect in the utility grid. Hence, maintaining the stable voltage, current ripple, and total harmonic distortions within the permissible IEEE std level during the charging time of grid to electric vehicle (G2V) has become an important task for researchers in the future. In order to mitigate power fluctuations during every charging cycle, it will enhance the battery life cycle in electric vehicles (EVs). Three phase–three level–three switch Vienna rectifier with fuzzy logic controller tuned PID controller is used here for AC/DC conversion with minimum switching loss. A fuzzy intelligent control strategy has been employed with the DC link voltage regulator in order to sustain the DC link voltage as constant and progress the voltage/current profile by injecting active power at the point of common coupling. Unit vector template (UVT)-based control strategy is employed here to identify the fundamental components from the load side and also estimate the reference phase current. This scheme enhances the performance and reduces the mathematical system complexity to diminish the harmonics in the distribution grid. The adaptability and feasibility of this proposed control method have been verified by the MATLAB simulation tool. To validate the response of the Vienna Rectifier with UVT controller are simulated with different unbalanced load conditions and also verified with 30 kW laboratory prototype experimental results using dsPIC30F4011 controller and the switch is IRFP260 with power diode RHRG30120. 相似文献