首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4716篇
  免费   441篇
  国内免费   48篇
电工技术   110篇
综合类   18篇
化学工业   1467篇
金属工艺   159篇
机械仪表   209篇
建筑科学   197篇
矿业工程   16篇
能源动力   294篇
轻工业   505篇
水利工程   81篇
石油天然气   78篇
武器工业   5篇
无线电   383篇
一般工业技术   769篇
冶金工业   141篇
原子能技术   33篇
自动化技术   740篇
  2024年   20篇
  2023年   80篇
  2022年   132篇
  2021年   346篇
  2020年   290篇
  2019年   350篇
  2018年   425篇
  2017年   409篇
  2016年   382篇
  2015年   206篇
  2014年   363篇
  2013年   549篇
  2012年   363篇
  2011年   381篇
  2010年   246篇
  2009年   198篇
  2008年   121篇
  2007年   82篇
  2006年   66篇
  2005年   32篇
  2004年   23篇
  2003年   24篇
  2002年   16篇
  2001年   8篇
  2000年   9篇
  1999年   5篇
  1998年   13篇
  1997年   6篇
  1996年   10篇
  1995年   7篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
排序方式: 共有5205条查询结果,搜索用时 15 毫秒
11.
Liu  Can  Sadeghzadeh  Seyed Mohsen 《Catalysis Letters》2021,151(10):2807-2815
Catalysis Letters - In order to carbonize o-phenylenediamine with CO2, an effective approach was used with UV light irradiation by Sn(IV) doping DFNS (SnD) supported CdSnO3 as a catalyst...  相似文献   
12.
The potential energy profile of the reaction between dimethyl disulfide and OH? radicals is explored by utilizing ab initio and hybrid meta density functional theory methods. Having the energies and structural data of the stationary points, statistical rate theories, such as transition state theory and variable reaction coordinate-transition state theory, are employed to compute the overall rate constants, and discuss the mechanism and product channels. On the basis of the calculations, the overall rate coefficient is predicted to be 2.49?×?10?10?cm3?molecule?1?s?1 at 298?K. It is found that in the most favorable pathway, the reaction proceeds via formation of the relatively unstable intermediate CH3S?(OH)SCH3 decomposing rapidly to yield CH3S?+CH3SOH.  相似文献   
13.
In this work, neat and modified nanodiamond (ND) particles were embedded into high-density polyethylene (HDPE) membranes to improve hydrophilicity and antifouling properties. The membranes were prepared via thermally induced phase separation (TIPS) method and used for pharmaceutical wastewater treatment in membrane bioreactors (MBR) system. To prevent the agglomeration of ND, it was modified using two methods: thermal carboxylation (ND-COOH) and grafting with polyethylene glycol (ND-PEG). Membranes with different concentration of ND-COOH and ND-PEG nanoparticles ranging from 0.00 to 1.00 wt % were prepared and characterized using a set of analyses including water contact angle, pure water flux, tensile strength, differential scanning calorimeter, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy. It was found that the optimum contents of ND-COOH and ND-PEG nanoparticles were 0.50 wt % and 0.75 wt %, respectively. The interfacial interaction between nanoparticles and HDPE matrix was studied based on Pukanzsky model. To examine the performance of membranes, critical flux, filtration experiment in the MBR, and fouling analysis of membranes were carried out. The results showed that among the fabricated membranes, 0.75 wt % HDPE/ND-PEG membrane had the highest water flux and the best antifouling properties. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47914.  相似文献   
14.
Cellulose dissolved in ionic liquid (1‐(carboxymethyl)pyridinium chloride)/water (60/40 w/w) mixture is regenerated in various non‐solvents, namely water, ethanol, methanol and acetone, to gain more insight into the contribution of non‐solvent medium to the morphology of regenerated cellulose. To this end, the initial and regenerated celluloses were characterized with respect to crystallinity, thermal stability, chemical structure and surface morphology using wide‐angle X‐ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. According to the results, regardless of non‐solvent type, all regenerated samples have the same chemical structure and lower crystallinity in comparison to the initial cellulose, making them a promising candidate for efficient biofuel production based on enzymatic hydrolysis of cellulose. The reduction in crystallinity of regenerated samples is explained based on the potential of the non‐solvent to break the hydrogen bonds between cellulose chains and ionic liquid molecules as well as the affinity of water and non‐solvent which can be evaluated based on Hansen solubility parameter. The latter also determines the phase‐separation mechanism during the regeneration process, which in turn affects surface morphology of the regenerated cellulose. The pivotal effect of regenerated cellulose crystallinity on its thermal stability is also demonstrated. Regenerated cellulose with lower crystallinity is more susceptible to molecular rearrangement during heating and hence exhibits enhanced thermal stability. © 2019 Society of Chemical Industry  相似文献   
15.
16.
Hydrogels, nanogels and nanocomposites show increasing potential for application in drug delivery systems due to their good chemical and physical properties. Therefore, we were encouraged to combine them to produce a new compound with unique properties for a long‐term drug release system. In this regard, the design and application of a nanocomposite hydrogel containing entrapped nanogel for drug delivery are demonstrated. To this aim, we first prepared an iron oxide nanocomposite nanogel based on poly(N‐isopropylacrylamide)‐co‐((2‐dimethylaminoethyl) methacrylate) (PNIPAM‐co‐PDMA) grafted onto sodium alginate (NaAlg) as a biocompatible polymer and iron oxide nanoparticles (ION) as nanometric base (PND/ION‐NG). This was then added into a solution of PDMA grafted onto NaAlg. Through dropwise addition of mixed aqueous solution of iron salts into the prepared polymeric solution, a novel hydrogel nanocomposite with excellent pH, thermal and magnetic responsivity was fabricated. The synthesized samples were fully characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy with energy‐dispersive X‐ray analysis, vibrating sample magnetometry and atomic force microscopy. A mechanism for the formation of PNIPAM‐co‐PDMA/NaAlg‐ION nanogel–PDMA/NaAlg‐ION hydrogel and PND/ION nanogel is suggested. Swelling capacity was measured at various temperatures (25 to 45 °C), pH values (from 2 to 11) and magnetic field and under load (0.3 psi) and the dependence of swelling properties of the nanogel–hydrogel nanocomposite on these factors was well demonstrated. The release rate of doxorubicin hydrochloride (DOX) as an anticancer drug was studied at different pH values and temperatures in the presence and absence of a magnetic field. The results showed that these factors have a high impact on drug release from this nanocomposite. The result showed that DOX release could be sustained for up to 12.5 days from these nanocomposite hydrogels, significantly longer than that achievable using the constituent hydrogel or nanogel alone (<1 day). The results indicated that the nanogel–hydrogel nanocomposite can serve as a novel nanocarrier for anticancer drug delivery. © 2019 Society of Chemical Industry  相似文献   
17.
Thermal bending analysis of doubly curved laminated shell panels with general boundary conditions and laminations is presented. The equations of equilibrium are derived in the form of two coupled sets of ordinary differential equations based on a general shell theory and solved through the state-space approach in a repeated manner. It is depicted that the results of the present method are in great agreement with analytical solutions. Cylindrical shell panels with general boundary conditions and laminations, where no analytical solution is available, are solved. It is found that the present method exhibits a high convergence rate as well as presenting accurate results in all cases.  相似文献   
18.
The Journal of Supercomputing - Recommender systems play an important role in dealing with the problems caused by the great and growing amount of information, and the collaborative filtering method...  相似文献   
19.
A facile sol–gel procedure has been developed for the synthesis of colloidal alumina nanocrystals. For the first time, optical characterization procedures were employed to study the quantum confinement effects in optical properties of the prepared Al2O3 sol. Accordingly, the hyperbolic band model was used to determine the optical band gap of colloidal alumina nanocrystals. X‐Ray diffraction pattern was used to study the crystallographic phase of the dried gel. Morphological characterization was performed using scanning electron microscopy (SEM). Inductively Coupled Plasma (ICP) emission spectroscopy was used to determination purity of the Al2O3 powder. High‐resolution TEM showed that the diameter of colloidal nanocrystals is about 10 nm. Photoluminescence spectroscopy demonstrated that quantum yields for colloidal nanocrystals are 68% with 300 nm excitation wavelength. The experimental observations confirm that highly stable alumina sol with strong UV emission was synthesized. The mentioned optical properties have not been reported before.  相似文献   
20.
Protection of Metals and Physical Chemistry of Surfaces - To improve the mechanical and biological properties and also to increase the lifetime and performance of Ti–6Al–4V dental...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号