首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10616篇
  免费   946篇
  国内免费   98篇
电工技术   208篇
综合类   44篇
化学工业   2990篇
金属工艺   253篇
机械仪表   471篇
建筑科学   411篇
矿业工程   22篇
能源动力   704篇
轻工业   1055篇
水利工程   209篇
石油天然气   159篇
武器工业   5篇
无线电   1090篇
一般工业技术   1814篇
冶金工业   240篇
原子能技术   77篇
自动化技术   1908篇
  2024年   45篇
  2023年   216篇
  2022年   388篇
  2021年   709篇
  2020年   639篇
  2019年   773篇
  2018年   891篇
  2017年   846篇
  2016年   846篇
  2015年   476篇
  2014年   808篇
  2013年   1176篇
  2012年   743篇
  2011年   823篇
  2010年   529篇
  2009年   450篇
  2008年   269篇
  2007年   193篇
  2006年   161篇
  2005年   109篇
  2004年   112篇
  2003年   63篇
  2002年   62篇
  2001年   28篇
  2000年   25篇
  1999年   25篇
  1998年   22篇
  1997年   19篇
  1996年   26篇
  1995年   22篇
  1994年   10篇
  1993年   15篇
  1992年   11篇
  1991年   18篇
  1990年   16篇
  1989年   14篇
  1988年   7篇
  1987年   7篇
  1986年   8篇
  1985年   8篇
  1984年   14篇
  1983年   12篇
  1982年   4篇
  1981年   3篇
  1980年   3篇
  1979年   6篇
  1978年   3篇
  1977年   2篇
  1973年   2篇
  1967年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
In this paper, two Zigler-Natta catalysts (ZNCs) were used to synthesize a commercially available linear low-density polyethylene (LLDPE), widely used in the packaging industry, on an industrial scale. The catalysts differ only in their ability to distribute comonomers between short and long chains. Both catalysts were fully characterized in the first section, and two similar ethylene/1-butene copolymers were made using them. Afterward, the produced copolymers were fully characterized using different techniques; namely, differential scanning calorimetry (DSC), successive self-nucleation and annealing (SSA), oxygen induction time (OIT), melt flow index (MFI), rheometric mechanical spectroscopy (RMS), and a wide range of mechanical experiments. It was revealed that while the presence of comonomers in short chains can reduce their resistance against oxidation (by more than 30%) and can cause a dramatic change in friction coefficients (by more than 20%), some of the other main mechanical properties of the made copolymers were independent of comonomer distribution between long and short chains. In addition, it was shown that ethylenic copolymers' strain hardening modulus (SHM) takes advantage of the homogenous distribution.  相似文献   
992.
In this research, polyvinyl chloride (PVC) with excellent shape-memory effects is 4D printed via fused deposition modeling (FDM) technology. An experimental procedure for successful 3D printing of lab-made filament from PVC granules is introduced. Macro- and microstructural features of 3D printed PVC are investigated by means of wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA) techniques. A promising shape-memory feature of PVC is hypothesized from the presence of small close imperfect thermodynamically stable crystallites as physical crosslinks, which are further reinforced by mesomorphs and possibly molecular entanglement. A detailed analysis of shape fixity and shape recovery performance of 3D printed PVC is carried out considering three programming scenarios of cold (Tg −45 °C), warm (Tg −15 °C), and hot (Tg +15 °C) and two load holding times of 0 s, and 600 s under three-point bending and compression modes. Extensive insightful discussions are presented, and in conclusion, shape-memory effects are promising,ranging from 83.24% to 100%. Due to the absence of similar results in the specialized literature, this paper is likely to fill a gap in the state-of-the-art shape-memory materials library for 4D printing, and provide pertinent results that are instrumental in the 3D printing of shape-memory PVC-based structures.  相似文献   
993.
Herein, a simple melt-blending method is utilized to disperse of halloysite nanotubes (HNTs) in polystyrene/polyolefin elastomer (PS/POE) blends. Based on morphological studies, the PS/POE/HNT nanocomposite containing up to 3 phr HNTs shows excellent nanofiller dispersion, while those filled with 5 phr HNTs exhibit nanofiller aggregation. To overcome the nanofiller aggregation issue, the polypropylene-grafted-maleic anhydride (PP-g-MA) compatibilizer is added to the PS/POE/HNT nanocomposite, which results in improved mechanical properties for the nanocomposite sheets. Furthermore, the addition of compatibilized HNTs to the PS/POE blends leads to decreased O2 and N2 gas permeabilities. Besides, incorporating POE, HNTs, and PP-g-MA leads to a decrease in water vapor transmission of PS. In the end, the experimentally-determined mechanical properties and gas permeabilities of the nanocomposite sheets are compared to those predicted by prevalent theoretical models, revealing a good agreement between the experimental and theoretical results. Molecular-dynamics simulations are also carried out to calculate the gas diffusion coefficients in the different sheets to further support the experimental findings in this study. Overall, the PS/POE/HNT/PP-g-MA nanocomposite sheets fabricated in this work demonstrate excellent mechanical and gas barrier properties; and hence, can be used as candidate packaging materials. However, the strength of the resulting PS/POE blend may be inferior to that of the virgin PS.  相似文献   
994.
In this study, biopolymer chitosan is presented as a template for synthesizing and shaping the mesoporous γ-Al2O3 macrospheres. This porous γ-Al2O3 granule has a high surface area (310 m2/g), high pore volume (.6148 cm3/g), and pore diameter between 2 and 10 nm. The full factorial design based on a mathematical model was implemented to study the acid concentration, chitosan amount, ammonia concentration, and aging time affecting the responses (Brunauer–Emmett–Teller surface area and pore volume). Predicted responses were found to be in satisfactory agreement with experimental values (R2 = .9580 and .9109, respectively). The adequacy of the model was examined by analyzing the residual distribution plots and Pareto graph. X-ray diffraction, scanning electron microscopy (SEM), thermogravimetric analysis, and N2 adsorption/desorption techniques are employed to characterize the structure of the prepared γ-alumina sample.  相似文献   
995.
The alginate thickener is the thickener frequently used for reactive printing of textile. The thickener responds with reactive pigments and thus does not lead to the fabric composition becoming stiffer. In this study, we prepared oxidised natural guar gum with hydrogen peroxide, sodium hypochlorite and sodium hydroxide. All other polysaccharides comprise reactive hydroxyl units with a stronger reactivity that must be replaced if they are to be used in reactive printing. Guar derivatives were synthesised and verified using Fourier-transform infrared (FTIR) spectroscopy. Natural thickeners, synthetic guar gum derivatives, have been employed in textile printing technique. In comparison to other synthetic thickeners, modified environmental guar gum polymer has been shown to be an ecologically friendly and low-cost thickener. Cotton fabric printed with modified guar thickening with hydrogen peroxide has even stronger colour strength than fabric printed with sodium alginate thickener, which is highly favourable. Penetration properties, colour value, colour strength, colour fastness to washing, light and rubbing was compared with alginate thickener (readily available on the market). Guar gum thickeners showed enhanced features versus sodium alginate for reactive printing. Partially replaced guar gum is an appropriate option due to the colour and physical properties.  相似文献   
996.
In this study, NiTi–x wt.% B4C (x = 0, 2, and 4) composites were consolidated with spark plasma sintering method, and the effects of boron carbide reinforcement addition on the microstructure and wear behavior of samples were investigated. Identification of the constituent phases of samples by the X-ray diffraction method plus Rietveld analysis revealed that the stability of the martensite phase increased in the composite samples because of mismatch stresses between the NiTi matrix phase and the reinforcing particles, which increases the density of the dislocations and facilitates the diffusion process that subsequently leads to the formation of stable intermetallics. The results of hardness test indicated that the hardness value increased from 3.67 GPa for pure NiTi to 10.99 GPa for NiTi–4 wt.% B4C. Results of wear test revealed that boron carbide reinforced composite specimens had higher wear resistance, whereas wear rate of NiTi sample was 3.6 × 10−3 mm3/N m, and it reached to .21 × 10−3 mm3/N m for NiTi–4 wt.% B4C. Investigation of microstructure by scanning electron microscopy images and EDS analysis revealed that the wear mechanism in NiTi samples was abrasive and the addition of B4C to NiTi changed the wear mechanisms from abrasive to a combination of oxidation, adhesive, and delamination mechanisms.  相似文献   
997.
998.
ABSTRACT

Phenolic phytochemicals have become of interest due to their therapeutic potential, particularly with regards to their anti-cancer, anti-inflammatory, hypolipidemic, and hypoglycemic properties. An evolving area of research involving phenolics in foods and their products pertains to the functional, biological, and nutritional consequences resulting from the binding between certain phenolic compounds and the macronutrient and micronutrient constituents of foods. The goal of this review is to provide a summary of studies investigating endogenous phenolic interactions with major components in food systems, including carbohydrates, proteins, lipids, minerals and vitamins, with a focus on the phenolic compounds and nutrients in oil-bearing plants. Another major objective is to provide a comprehensive overview of the chemical nature of phenolic interactions with food constituents that could affect the quality, nutritional and functional properties of foods. Such information can assist in the discovery and optimization of specific phenolic complexes in plant-based foods that could be utilized towards various applications in the food, nutraceutical and pharmaceutical industries.  相似文献   
999.
ABSTRACT

A relatively better performance of jute fiber and yarn reinforced concrete composites can open up a wide access to application of natural resources in concrete strengthening. In order to achieve this goal, an experimental investigation on the flexural, compressive and tensile strengths of Jute Fiber Reinforced Concrete Composites (JFRCC) and Jute Yarn Reinforced Concrete Composites (JYRCC) has been conducted. To draw a specific conclusion, the mix ratios of 1:1.5:3 and 1:2:4 (by volume) of concrete have been maintained with incorporation of jute fiber and yarn in concrete mortar having different cut lengths with distinct volumetric ratios. Finally, a comparison of the JFRCC and JYRCC strength increments with respect to the plain concrete has been investigated. A significant increment of compressive, flexural and tensile strength was observed only for a short cut length having a low volumetric ratio, where JYRCC increment value was always found progressive. A far more regular arrangement and adequate mixture of JYRCC was also visualized compare to JFRCC in concrete mortar. All the principal increment values were found only in case of JYRCC with a mix ratio of 1:1.5:3. So, it can be concluded that the presence of jute yarn and more cement content can strengthen the concrete to a great extent.  相似文献   
1000.
The l1‐SVD is an efficient method for spatial sparsity based direction of arrival (DOA) estimation of narrowband signals. We propose a coherent strategy for extension of the l1‐SVD method to wideband signals. In this method, focusing matrices are used for transferring different frequency bins data to the reference bin, and then the transformed data are combined. Finally the l1‐SVD is applied for the combined data. The proposed method outperforms the non‐coherent strategy with a lower computational burden. © 2013 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号