首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2020篇
  免费   192篇
  国内免费   17篇
电工技术   47篇
综合类   7篇
化学工业   593篇
金属工艺   63篇
机械仪表   111篇
建筑科学   83篇
矿业工程   6篇
能源动力   117篇
轻工业   278篇
水利工程   30篇
石油天然气   24篇
无线电   171篇
一般工业技术   324篇
冶金工业   46篇
原子能技术   17篇
自动化技术   312篇
  2024年   10篇
  2023年   41篇
  2022年   74篇
  2021年   161篇
  2020年   146篇
  2019年   162篇
  2018年   191篇
  2017年   173篇
  2016年   179篇
  2015年   88篇
  2014年   154篇
  2013年   231篇
  2012年   143篇
  2011年   138篇
  2010年   97篇
  2009年   79篇
  2008年   52篇
  2007年   23篇
  2006年   15篇
  2005年   11篇
  2004年   13篇
  2003年   7篇
  2002年   9篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1992年   3篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有2229条查询结果,搜索用时 250 毫秒
91.
A hydroxyapatite (HA) particulate reinforced ultrahigh molecular weight polyethylene (UHMWPE) nanocomposite is fabricated by internal mixer at 180°C and using of paraffin oil as a processing aid to overcome the high viscosity of melted UHMWPE. The reinforcing effects of nano‐HA are investigated on nanomechanical properties of HA/UHMWPE nanocomposites by nanoindentation and nanoscratching methods. Results show that the nanocomposite with 50 wt % nano‐HA exhibits a Young's modulus and hardness of 362.5% and 200% higher, and a friction coefficient of 38.86% lower than that of pure UHMWPE, respectively. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42052.  相似文献   
92.
93.
In a multithreaded program, competition of threads for shared resources raises the deadlock possibility, which narrows the system liveness. Because such errors appear in specific schedules of concurrent executions of threads, runtime verification of threads behavior is a significant concern. In this study, we extended our previous approach for prediction of runtime behavior of threads may lead to an impasse. Such a prediction is of importance because of the nondeterministic manner of competing threads. The prediction process tries to forecast future behavior of threads based on their observed behavior. To this end, we map observed behavior of threads into time‐series data sets and use statistical and artificial intelligence methods for forecasting subsequent members of the sets as future behavior of the threads. The deadlock prediction is carried out based on probing the allocation graph obtained from actual and predicted allocation of resources to threads. In our approach, we use an artificial neural network (ANN) because ANNs enjoy the applicable performance and flexibility in predicting complex behavior. Using three case studies, we contrasted results of the current and our previous approaches to demonstrate results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
94.
In recent earthquakes, many buildings have been damaged due to the soft‐storey mechanism failure. The seismic design codes for buildings do not contain enough criteria to predict the real displacement of such buildings. This paper focuses on evaluating the nonlinear displacement of buildings that fail in soft‐storey mechanism form. Results show that the nonlinear static procedure with coefficient method, which is described in Chapter 3 of ASCE/SEI 41‐06, does not have sufficient accuracy for estimation of structure displacement demand in such buildings. In this paper, the coefficient methodology is used for evaluating the target displacement for 5‐storey, 8‐storey and 15‐storey special moment resisting steel frames. For this purpose, dynamic nonlinear time‐history analysis has been applied for the mentioned structures having a soft‐storey mechanism failure form. The numerical results of storey displacement and interstorey drift were compared with those values obtained from the coefficient method described in Chapter 3 of ASCE/SEI 41‐06. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
95.
96.
A hybrid approach between the Taguchi method and grey relational analysis (GRA) with entropy measurement was applied to determine a single optimum setting for reaction factors of the proposed ethylene dimerization catalyst having overall selectivity to 1-butene (S1-btn (%)) and turnover frequency (TOF (h-1)) as multiple quality characteristics. Titanium tetrabutoxide (Ti(OC4H9)4) catalyst precursor in combination with triethyl aluminum (TEA) activator, 1,4-dioxane as a suitable modifier, and ethylene dichloride (EDC) as a novel promoter were used in the catalysis. Control factors of temperature, pressure, Al/Ti, 1,4-dioxane/Ti, and EDC/Ti mol ratios were investigated on three levels and their main effects were discussed. The effect of the binary interaction between temperature, pressure, and Al/Ti mol ratio was also examined. Weight of the responses was determined using entropy. Analysis of variance (ANOVA) for data obtained from GRA indicated that EDC/Ti mol ratio with 27.64% contribution had the most profound effect on the multiple quality characteristics. Development of the weighted Grey-Taguchi method used the Taguchi method as its basic structure, adopted GRA to deal with multiple responses, and entropy to enhance the reasonability of the comprehensive index produced by GRA to make the results more objective and accurate. Overall, these combined mathematical techniques improved catalytic performance for 1-butene production.  相似文献   
97.
The development of desirable chemical structures and properties in nanocomposite membranes involve steps that need to be carefully designed and controlled. This study investigates the effect of adding multiwalled nanotubes (MWNT) on a Kapton–polysulfone composite membrane on the separation of various gas pairs. Data from Fourier transform infrared spectroscopy and scanning electron microscopy confirm that some studies on the Kapton–polysulfone blends are miscible on the molecular level. In fact, the results indicate that the chemical structure of the blend components, the Kapton–polysulfone blend compositions, and the carbon nanotubes play important roles in the transport properties of the resulting membranes. The results of gas permeability tests for the synthesized membranes specify that using a higher percentage of polysulfone (PSF) in blends resulted in membranes with higher ideal selectivity and permeability. Although the addition of nanotubes can increase the permeability of gases, it decreases gas pair selectivity. Furthermore, these outcomes suggest that Kapton–PSF membranes with higher PSF are special candidates for CO2/CH4 separation compared to CO2/N2 and O2/N2 separation. High CH4, CO2, N2, and O2 permeabilities of 0.35, 6.2, 0.34, and 1.15 bar, respectively, are obtained for the developed Kapton–PSF membranes (25/75%) with the highest percentage of carbon nanotubes (8%), whose values are the highest among all the resultant membranes. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43839.  相似文献   
98.
Cu–Ni nanoparticles (NPs) thin films were prepared by Direct Current (DC) magnetron sputtering with Cu and Ni targets. The products were used as catalysts for Thermal CVD (TCVD) growing of carbon nanotubes (CNTs) from acetylene gas at 825°C. In order to characterize the nano catalysts, X-ray Diffraction (XRD) and Atomic Force Microscopy (AFM) and to study the synthesized CNTs Scanning Electron Microscopy (SEM) and Raman Spectroscopy were applied. A remarkable CNT grown on the sub-surface of catalyst layer compared to its top is deduced from SEM images. Despite the poor catalytic activity of the top-surface, these considerations led us to conclude more catalytic activity of the sub-surface.  相似文献   
99.
Monodisperse poly(2‐hydroxyethyl methacrylate), p‐HEMA, microspheres in size ranging from 16 to 340 (μm) were synthesized by in situ emulsion photopolymerization of HEMA monomer with polyethylene glycol diacrylate (p‐EGDA) by means of a three‐dimensional microfluidic flow‐focusing device. An aqueous solution of HEMA, p‐EGDA as chain extender and UV‐photoinitiator serving as dispersed phase formed microdroplets in a continuous oil phase mainly consisting of n‐heptane. A downward coaxial orifices design in the device led to confinement of the reaction admixtures thread to central axis of the microchannels. This design strategy could solve the wetting problem of dispersed phase with the microchannels leading to a successful production of monodisperse microspheres with size variation of less than 4%. The effects of concentration of p‐EGDA, surfactant, and flow rate ratios on microsphere size were examined. It was observed that increasing the concentration of p‐EGDA slightly increases the size whereas increasing the flow rate ratios of continuous to dispersed phase effectively decreases the size of microspheres. The rapid continuous synthesis of p‐HEMA based microspheres via the microfluidic route with reliable control over size, size distribution, and composition opens new doors for mass production of biocompatible and degradable polymeric microspheres for enormous biotechnological applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40925.  相似文献   
100.
This work aims to improve the performance of air-breathing microbial fuel cells (MFCs) through using hydrocarbon polymer based nanocomposite proton exchange membranes. Accordingly, nanocomposite membranes based on sulfonated poly(ether ether ketone) (SPEEK) and montmorillonite (MMT) were investigated for such an application. Although the incorporation of MMT into SPEEK membranes resulted in reduced oxygen permeability as well as proton conductivity, but the overall selectivity was found to be improved. MFC tests revealed that using the optimized nanocomposite membrane (SPEEK-70/MMT-3 wt%) results in a considerably higher open circuit voltage (OCV) compared to the corresponding neat membrane. Moreover, it was found that the SPEEK-70/MMT-3 wt% membrane is able to provide about 40% more power output than Nafion®117. On the account of high proton conductivity, low oxygen permeability, high electrochemical performance, ease of preparation and low cost, hydrocarbon based nanocomposite PEMs could be considered as promising electrolytes to enhance the performance of MFCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号