首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   8篇
  国内免费   1篇
化学工业   60篇
金属工艺   7篇
机械仪表   3篇
建筑科学   3篇
能源动力   5篇
轻工业   5篇
水利工程   1篇
石油天然气   2篇
无线电   14篇
一般工业技术   45篇
冶金工业   7篇
原子能技术   1篇
自动化技术   18篇
  2023年   1篇
  2022年   8篇
  2021年   8篇
  2020年   6篇
  2019年   5篇
  2018年   11篇
  2017年   10篇
  2016年   8篇
  2015年   3篇
  2014年   9篇
  2013年   14篇
  2012年   6篇
  2011年   7篇
  2010年   9篇
  2009年   15篇
  2008年   7篇
  2007年   8篇
  2006年   8篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1997年   2篇
  1996年   2篇
  1995年   5篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有171条查询结果,搜索用时 0 毫秒
31.
The influence of a gap provided in integral inclined ribs on heat transfer and friction factor enhancement is investigated. Experiments are conducted to obtain heat transfer and friction factor characteristics in a square channel with two opposite in-line ribbed walls for Reynolds numbers from 5000 to 40000. The test section of square channel composed of integral inclined ribs with a gap and has a length-tohydraulic diameter ratio (L/D h ) of 20. The rib pitch-to-height ratio (p/e) is 10, the rib height-to-hydraulic diameter ratio (e/D h ) is 0.060 and rib attack angle (α) varies in the range of 300 to 900 (4 steps). The relative gap position (d/W) and relative gap width (g/e) is varied in the range of 1/5–2/3 (5 steps) and 0.5–2.0 (4 steps), respectively. The enhancement in heat transfer and friction factor of this roughened duct was compared with smooth duct and duct roughened with continuous inclined ribs (with no gap) under similar flow condition. Presence of inclined ribs with a gap yields about 4-fold enhancements in Nusselt number and about 8-fold increase in the friction factor compared with smooth duct and about 1.3 times and 1.4 times higher than the case of continuous ribs (without gaps) for the entire range of parameters investigated. Ribs with relative gap width of 1.0 at relative gap position of 1/3 and attack angle of 60° provides maximum heat transfer and friction factor enhancement.  相似文献   
32.
To avoid stockouts and maintain product availability, retailers typically carry excess units and subsequently incur higher cost. In case of style/fashion goods, demand forecasting is extremely difficult due to short selling cycles. The purpose of this study was to minimise the cost of excess stocking without compromising product availability. To achieve these conflicting objectives, our study includes two ordering instances and two returns policies. The time between orders subsequently helps resolve demand uncertainty. Existing studies consider only one type of returns policy, that is, returns on the entire purchase quantity; whereas our study considers two types of returns policies: returns on the first order size and returns on the entire purchase quantity. This study also includes models for the retailer and the supply chain system. Analytical and numerical insights into our study enable the retailer to select his appropriate returns policies to maximise his as well as system’s expected profits. We also show that perfect coordination of partners will help them improve their profits considerably.  相似文献   
33.
In the modeling of brain mechanics subjected to primary blast waves, there is currently no consensus on how many biological components to be used in the brain–meninges–skull complex, and what type of constitutive models to be adopted. The objective of this study is to determine the role of layered meninges in damping the dynamic response of the brain under primary blast loadings. A composite structures composed of eight solid relevant layers (including the pia, cerebrospinal fluid (CSF), dura maters) with different mechanical properties are constructed to mimic the heterogeneous human head. A hyper-viscoelastic material model is developed to better represent the mechanical response of the brain tissue over a large strain/high frequency range applicable for blast scenarios. The effect of meninges on the brain response is examined. Results show that heterogeneous composite structures of the head have a major influence on the intracranial pressure, maximum shear stress, and maximum principal strain in the brain, which is associated with traumatic brain injuries. The meninges serving as protective layers are revealed by mitigating the dynamic response of the brain. In addition, appreciable changes of the pressure and maximum shear stress are observed on the material interfaces between layers of tissues. This may be attributed to the alternation of shock wave speed caused by the impedance mismatch.  相似文献   
34.
INCONEL alloy 740 is a newly developed Ni–Cr–Co–Mo–Nb–Ti–Al superalloy in the application to ultra-supercritical boilers with steam temperatures up to 700 °C. By means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), micro-chemical phase analyses, and corrosion-resisting test, this paper investigates the structure stability of the alloy at elevated temperature and concentrates on coal ash corrosion performance of the alloy under the simulated coal ash/flue gas condition. Experimental results show that the most important structure instabilities of the alloy during prolonged aging are γ′ coarsening, γ′ to η transformation and G phase formation at grain boundary. The performance of corrosion resistance of the alloy would meet the requirement of ultra-supercritical boiler tubes. The phase computation by means of Thermo-Calc has been adopted in chemical composition modification for structure stability improvement. Two suggested new modified alloys in adjustment of the Al and Ti contents and in control of Si level, and also in maintenance of Cr content of the alloy were designed and melted for experimental investigation. These two modified alloys exhibit more stable microstructure during 760 °C long time aging.  相似文献   
35.
36.
Absorption of CW Yb-fiber laser light of 1.07 μm wavelength in water has been measured at different water temperatures and laser intensities. The absorption coefficient was estimated to be 0.135 cm(-1) at 25 °C water temperature, and this was found to decrease with temperature at a rate of 5.7 × 10(-4) cm(-1) °C(-1). The absorption coefficient increased significantly when the laser beam was focused in water, and the increase depended on the distance of the focal point from the water surface. This has been attributed to the absorption and scattering losses of laser radiation in a cavity formed in water by the focused beam at laser intensities in the megawatts per square centimeter and higher range.  相似文献   
37.
Wireless Personal Communications - Due to the limited resources of Internet of Things (IoT) nodes, routing protocols for these networks should be designed in such a way that not only reduce the...  相似文献   
38.
In their natural form, fats and vegetable oils melt at temperatures useful for thermal energy storage. Incremental improvement of their heat release characteristics could pave the way for commercial applications as phase change materials (PCM). These chemicals could provide a biomaterial alternative to a technology dominated by paraffin and salt products.Mixture heats of fusion and melting points were evaluated for single acid derivatives of stearic, palmitic, and oleic acids to develop a fundamental understanding of the solid-liquid transition and to better understand how to convert natural compositions to useful PCM products. Many mixtures of monoacid derivatives of a single fatty acid formed single sharp solid-liquid phase transitions useful for PCM applications. These mixtures also qualitatively exhibited freezing point depression therein allowing the mixture composition to be used as a means to control the temperature of the phase transition. In mixtures of monoacid derivatives from different fatty acids, melting occurred over wider temperature ranges with eventual separation of the solid-liquid transition to at least two different events. This work demonstrates that it is possible to fully convert natural fatty acid mixtures into high performance phase change materials.  相似文献   
39.
The objective of present study was to modify the surface of Poly(D,L-lactide-co-glycolide acid) (PLGA) nanoparticles (NPs) with chitosan to enhance the mucoadhesive potential of carrier system. Grafting of chitosan on PLGA surface was carried out via amide bond formation mediated by carbodiimide and confirmed by FTIR spectroscopy. Self-assembled PLGA NPs containing chlorpromazine hydrochloride were fabricated by 23 factorial design. The improved mucoadhesive potential was confirmed by several tests including in vitro mucoadhesion study. Ex vivo permeation was satisfactory. Histopathological study on sheep nasal mucosa revealed safe mucoadhesion. They were also found to be robust on accelerated stability study.  相似文献   
40.
Polyhydroxyalkanoates (PHAs) are considered as sustainable ‘green/bio plastics’ because they have potential to replace their depleting petroleum-based competitors in the recent future. To reach this goal, PHAs must be able to compete with the established petroleum-based plastics in both technical and economic aspects. The current PHA production is based on high-priced substrates of high nutritional value and simple carbon sources such as glucose, sucrose, starch, or vegetable oils. Non-food based carbon-rich complex polysaccharides of lignocellulosic and marine biomass can be used as alternative and suitable feedstock through consolidated bioprocessing (CBP). CBP is a promising strategy that involves the production of lytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products in a single process step. CBP offers very large cost reductions if microorganisms possessing the abilities are found or microbial processes are developed to utilize substrate and simultaneously produce products. This review focuses on possible available complex polysaccharides of lignocellulosic and marine biomass that can be used as resources to produce PHAs in biorefineries, including CBP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号