Wireless Personal Communications - In the present scenario, there is a boom in the demand of the users to achieve increased capacity, high data, low latency, and high-performance rates. 5G New... 相似文献
Wireless communication networks have much data to sense, process, and transmit. It tends to develop a security mechanism to care for these needs for such modern-day systems. An intrusion detection system (IDS) is a solution that has recently gained the researcher’s attention with the application of deep learning techniques in IDS. In this paper, we propose an IDS model that uses a deep learning algorithm, conditional generative adversarial network (CGAN), enabling unsupervised learning in the model and adding an eXtreme gradient boosting (XGBoost) classifier for faster comparison and visualization of results. The proposed method can reduce the need to deploy extra sensors to generate fake data to fool the intruder 1.2–2.6%, as the proposed system generates this fake data. The parameters were selected to give optimal results to our model without significant alterations and complications. The model learns from its dataset samples with the multiple-layer network for a refined training process. We aimed that the proposed model could improve the accuracy and thus, decrease the false detection rate and obtain good precision in the cases of both the datasets, NSL-KDD and the CICIDS2017, which can be used as a detector for cyber intrusions. The false alarm rate of the proposed model decreases by about 1.827%.
In this paper, we propose to use Artificial Bee Colony (ABC) optimization to solve the joint mode selection, channel assignment, and power allocation (JMSCPA) problem to maximize system throughput and spectral efficiency. JMSCPA is a problem where the allocation of channel and power depends on the mode selection. Such problems require two step solution and are called bi-level optimization problems. As bi-level optimization increases the complexity and computational time, we propose a modified version of single-level ABC algorithm aided with the adaptive transmission mode selection algorithm to allocate the cellular, reuse, and dedicated modes to the DUs along with channel and power allocation based on the network traffic load scenarios. A single variable, represented by the users (CUs and DUs) is used to allocate mode selection, and channel allocation to solve the JMSCPA problem, leading to a simpler solution with faster convergence, and significant reduction in the computational complexity which scales linearly with the number of users. Further, the proposed solution avoids premature stagnation of conventional ABC into local minima by incorporating a modification in its update procedure. The efficacy of the ABC-aided approach, as compared to the results reported in the literature, is validated by extensive numerical investigations under different simulation scenarios.
A nitrogen plasma annealing process for gate dielectric applications in 4H-SiC metal oxide semiconductor (MOS) technology has been investigated. This process results in substantially greater interfacial N coverage at the SiO2/4H-SiC interface and lower interface trap densities than the state-of-the-art nitric oxide (NO) annealing process. Despite these exciting results, the field-effect mobility of MOS field-effect transistors (MOSFETs) fabricated by use of this process is very similar to that of NO-annealed MOSFETs. These results emphasize the importance of understanding mobility-limiting mechanisms in addition to charge trapping in next-generation 4H-SiC MOSFETs. 相似文献
Microbial biofilm formation on implantable devices causes chronic infections that cannot be treated with existing antimicrobials. Quorum sensing inhibitors (QSIs) have recently emerged as novel antimicrobials for the prevention of biofilm formation. But blocking QS alone is insufficient to inhibit biofilm-associated chronic infections. Herein, chitosan hollow nanospheres are capped by bacteria-responsive β-casein to form a synergistic antifouling nanosystem consisting of a QSI and bactericide. β-casein is degraded by protease in a bacteria-colonized microenvironment in situ thus, QSI and bactericide are released sequentially. The release of QSI sensitises bacteria effectively through reduction of surface hydrophobicity, eDNA content, and lipopolysaccharide production in biofilms, amplifying the chemotherapeutic action of the bactericide. Compared to the uncoated surface, the coated surface inhibits biofilm formation and removes preformed biofilms of Pseudomonas aeruginosa PAO1 and methicillin-resistant Staphylococcus aureus by 1.8 logs and 1.9 logs of biomass inhibition, respectively. The coated catheters are found to stay clean for 30 days under artificial urine flow, while the uncoated catheters are clogged by bacterial biofilms within 5 days. Finally, the long term antifouling activity in vivo is confirmed. Overall, the nanosystem is devoted to making urinary catheters resistant to bacterial biofilm formation for the long term. 相似文献
We investigate a systematic study of source pocket tunnel field-effect transistor (SP TFET) with dual work function of single gate material by using uniform and Gaussian doping profile in the drain region for ultra-low power high frequency high speed applications. For this, a n+ doped region is created near the source/channel junction to decrease the depletion width results in improvement of ON-state current. However, the dual work function of the double gate is used for enhancement of the device performance in terms of DC and analog/RF parameters. Further, to improve the high frequency performance of the device, Gaussian doping profile is considered in the drain region with different characteristic lengths which decreases the gate to drain capacitance and leads to drastic improvement in analog/RF figures of merit. Furthermore, the optimisation is performed with different concentrations for uniform and Gaussian drain doping profile and for various sectional length of lower work function of the gate electrode. Finally, the effect of temperature variation on the device performance is demonstrated. 相似文献
A simple analytical method is presented which improves upon the Hermite-Gauss field proposed by S.K. Korotky et al. (1982) for diffused waveguides by taking into account the evanescent field in the cover region. The method is used to analyze the propagation characteristics of diffused planar and channel waveguides 相似文献
The authors present a solution to the following problems related to architectural synthesis. (1) Given an input specification and a performance constraint, determine a lower bound number of resources (active and interconnect) required to execute the data flow graph while satisfying the performance constraint. (2) Determine a lower bound performance for executing an input specification for a given number of resources (active and interconnect). These bounds are close to the actual designs synthesized by several existing systems 相似文献
A simple and accurate method is presented for studying the coupling characteristics of 3D diffused channel waveguide directional couplers. The method is based on the scalar variational principle and differs from other methods as it does not require any assumption for the functional form of the trial field. The authors also propose an equivalent 2D directional coupler that also gives accurate results and, hence, saves considerable computational time, Comparison with experimental and other theoretical results is also presented 相似文献
In this paper we obtain transient solutions of a software reliability model under the assumption that the failure rate is proportional to the remaining errors in the software under imperfect debugging and error generation. The maximum number of errors in the software is assumed to be finite. We obtain the transient probabilities for the remaining errors, mean number of errors remaining, reliability of the software, expected number of failures etc. A method to estimate model parameters is given. Finally, a numerical example is presented. 相似文献