Palmprint recognition and palm vein recognition are two emerging biometrics technologies. In the past two decades, many traditional methods have been proposed for palmprint recognition and palm vein recognition, and have achieved impressive results. However, the research on deep learning-based palmprint recognition and palm vein recognition is still very preliminary. In this paper, in order to investigate the problem of deep learning based 2D and 3D palmprint recognition and palm vein recognition in-depth, we conduct performance evaluation of seventeen representative and classic convolutional neural networks (CNNs) on one 3D palmprint database, five 2D palmprint databases and two palm vein databases. A lot of experiments have been carried out in the conditions of different network structures, different learning rates, and different numbers of network layers. We have also conducted experiments on both separate data mode and mixed data mode. Experimental results show that these classic CNNs can achieve promising recognition results, and the recognition performance of recently proposed CNNs is better. Particularly, among classic CNNs, one of the recently proposed classic CNNs, i.e., EfficientNet achieves the best recognition accuracy. However, the recognition performance of classic CNNs is still slightly worse than that of some traditional recognition methods.
Machine Intelligence Research - One of the most significant challenges in the neuroscience community is to understand how the human brain works. Recent progress in neuroimaging techniques have... 相似文献
Gas migration in coal bed is a multiple-physical process, of which not only includes gas desorption/diffusion through coal matrix and gas Darcy flow through the cleat system, but also results in deform... 相似文献
Bioglass (BG) possesses excellent bioactivity and has been widely used in the manufacture of biomaterials. In this study, a composite with different surface bioactivity was fabricated via in situ melting polymerization by incorporating BG and poly(amino acid) (PAA) at a suitable ratio. The structure of the composite was characterized by Fourier transform infrared spectroscopy and XRD. The compressive strength of the BG/PAA composites was 139 MPa (BG:PAA = 30:70). The BG/PAA composites were degradable, and higher BG in composite showed higher weight loss after 4 weeks of incubation in simulated body fluid. In addition, the BG/PAA composite maintained adequate residual compressive strength during the degradation period. The SEM results showed the differences in surface bioactivities of the composites directly, and 30BG/PAA composite showed thicker apatite layer and higher Ca/p than 15BG/PAA. in vitro MG-63 cell culture experiments showed that the composite was noncytotoxic and thus allows cells to adhere, proliferate, and differentiate. This indicates that the composite has good biocompatibility. The implantations in the bone defects of rabbits for 4 and 12 weeks were studied. The composites had good biocompatibility and were capable of guiding new bone formation without causing any inflammation. The composite may be successfully used in the development of bone implants. 相似文献
A new kind of UV-absorbing silicon-fluorinated acrylic emulsion was prepared by emulsion polymerization with 4-allyloxy-2-hydroxybenzophenone, 3-methacryloxypropyltrimethoxysilane (MPS) and hexafluorobutyl methacrylate (HFMA) as functional monomers. The emulsion and its coating were characterized by transmission electron microscope, Fourier transform infrared spectrum (FTIR), X-ray photoelectron spectroscopy, ultraviolet absorption spectrum,thermo-gravimetric analysis, water contact angle (CA), and artificial accelerated aging test. The results indicated that the emulsion with core-shell structure was synthesized and showed prominent absorption peaks at 320 and 350 nm. The water CA of the coating was increased from 70.2° to 86.7° because of the incorporated HFMAs and MPSs. Both of the initial and final decomposition temperatures of the coating were increased by more than 20°C compared with those of the unmodified coating. After 10 days of accelerated aging, the color difference (ΔE) and rate of loss of gloss (ΔG) were only 2.78% and 5.22%, while those of the unmodified coating were as high as 22.94% and 78.57%, respectively. Because of the UV absorbers were incorporated by chemical reaction, the new coating had a more durable and effective anti-ultraviolet performance compared with the coatings the UV absorbers were introduced by physical blending. 相似文献
Fe-Al intermetallics with remarkable high-temperatureintensity and excellent erosion,high-temperatureoxidation and sulfuration resistance are potential lowcost high-temperature structural material.ProducingFe-Al/WC composite coating by high velocity arcspraying(HVAS)on structural materials would notonly obviate the problems faced in fabrication of thesealloys into useful shapes,but also allow the effectiveuse of their outstanding high-temperature performance,which might thus promisingly mak… 相似文献