首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   407篇
  免费   6篇
电工技术   11篇
化学工业   101篇
金属工艺   14篇
机械仪表   12篇
建筑科学   4篇
能源动力   6篇
轻工业   17篇
无线电   35篇
一般工业技术   59篇
冶金工业   116篇
原子能技术   20篇
自动化技术   18篇
  2022年   5篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2017年   3篇
  2016年   4篇
  2015年   1篇
  2014年   12篇
  2013年   6篇
  2012年   7篇
  2011年   12篇
  2010年   9篇
  2009年   11篇
  2008年   13篇
  2007年   19篇
  2006年   10篇
  2005年   13篇
  2004年   11篇
  2003年   8篇
  2002年   12篇
  2001年   10篇
  2000年   8篇
  1999年   15篇
  1998年   38篇
  1997年   26篇
  1996年   17篇
  1995年   19篇
  1994年   19篇
  1993年   12篇
  1992年   7篇
  1991年   9篇
  1990年   8篇
  1989年   8篇
  1988年   8篇
  1987年   6篇
  1986年   5篇
  1985年   6篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   4篇
  1976年   3篇
  1975年   1篇
排序方式: 共有413条查询结果,搜索用时 15 毫秒
11.
In spent fuel pools at the Fukushima Daiichi Nuclear Power Station (1F), seawater was injected for cooling purposes after the tsunami disaster in March 2011. It is well known that the chloride in the seawater has the potential to cause localized corrosion (e.g., pitting corrosion) in metals. In this study, we evaluated the pitting potentials of zircaloy-2, the material used in the fuel cladding tubes in 1F, as a function of chloride concentration. To accomplish this, we used artificial seawater under gamma-ray irradiation and investigated the effect of radiolysis on pit initiation of zircaloy-2 in water containing sea salt. Changes in the composition of water containing sea salt were analyzed as well, both before and after gamma-ray irradiation. The characteristics of the resultant oxide films formed on zircaloy-2 were evaluated by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy. The experimental results showed that the pitting potential under irradiation was slightly higher than that under conditions in which no radiation was present, and that the pitting potential decreased with increasing chloride concentration in the presence as well as the absence of radiation. Solution analyses for water containing sea salt showed that hydrogen peroxide was generated by irradiation. The oxide film was composed of zirconium oxide and was made thicker during the irradiation. The higher pitting potential could thus be explained by the capacity of hydrogen peroxide to oxidize the surface and enhance oxide film formation. Under gamma-ray irradiation, the zircaloy-2 surface with an oxide film formed by radiolysis products was found to be resistant to pitting in the presence of chloride.  相似文献   
12.
Silk fibers and membranes were acylated with octadecenylsuccinic anhydride (ODSA) at 75°C for different times. Swelling [N,N‐dimethylformamide (DMF) and dimethyl sulfoxide (DMSO)] and nonswelling (xylene) solvent media were used for the reaction. Silk membranes that reacted in DMF or DMSO displayed faster reaction kinetics and attained higher weight‐gain values than fibers. The effect of the solvent on the reaction yield was in the following order: DMSO > DMF ? xylene. The Fourier transform infrared spectra of acylated silk samples showed the characteristic absorption bands of the anhydride at 2990, 2852, 1780–1700, and 1170 cm?1. The intensity of the latter band, which increased linearly with the weight gain, was used as a marker for evaluating the reaction kinetics of the samples acylated in the nonswelling medium. The moisture regain and water retention of silk fibers acylated with ODSA decreased significantly, regardless of the solvent system used. Accordingly, the water repellency increased. Acylation induced an increase in the thermal stability of the silk fibers and membranes. Fine particles adhering to the surfaces of the silk fibers acylated in xylene were detected by scanning electron microscopy. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 324–332, 2003  相似文献   
13.
With the recent improvement in the performance and miniaturization of computers, communication equipment, and various other pieces of electronic apparatus, multi-layer printed-circuit boards have attained wide usage. The need for drilling such boards has been increasing. A multi-layer printed-circuit board used in the computer is usually provided with 2,000 to 3,000 holes 0.5-0.9 mm in diameter, each made by a NC high-speed automatic drilling machine. It is estimated that the number of holes made for the drilling of printed-circuit boards might well have reached 200 billion in 1971. Drilling printed-circuit boards is accomplished by using a drill, a punch, a laser beam, an electron beam and liquid jet, or by other methods. It is considered that the use of a drill is most suitable from the point of view of surface quality of drilled holes, reliability of their plating through holes, workability, and so forth.  相似文献   
14.
Silk sericin (SS)/silk fibroin (SF) blend nanofibers have been produced by electrospinning in a binary SS/SF trifluoroacetic acid (TFA) solution system, which was prepared by mixing 20 wt.% SS TFA solution and 10 wt.% SF TFA solution to give different compositions. The diameters of the SS/SF nanofibers ranged from 33 to 837 nm, and they showed a round cross section. The surface of the SS/SF nanofibers was smooth, and the fibers possessed a bead-free structure. The average diameters of the SS/SF (75/25, 50/50, and 25/75) blend nanofibers were much thicker than that of SS and SF nanofibers. The SS/SF (100/0, 75/25, and 50/50) blend nanofibers were easily dissolved in water, while the SS/SF (25/75 and 0/100) blend nanofibers could not be completely dissolved in water. The SS/SF blend nanofibers could not be completely dissolved in methanol. The SS/SF blend nanofibers were characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, and differential thermal analysis. FTIR showed that the SS/SF blend nanofibers possessed a random coil conformation and ß-sheet structure.  相似文献   
15.
Composite films made of silk fibroin (SF) and polyallylamine (PAA) are prepared that contain various compositional ratios. These materials are analyzed to elucidate the resulting physical properties and to assess their potential toward advanced applications as industrial materials. The composite films are obtained from a SF and PAA binary system by dry casting from aqueous solution. These composite films exhibit excellent processability such as film forming capabilities, and the elongation at break is increased in the wet state. The differential scanning calorimetry (DSC) curves of the composites suggest that a mutual interaction takes place between the SF and PAA. This interaction is believed to occur because the endothermic peak, corresponding to the individual polymer, shifts with increasing SF content. The random coil conformation of the SF is present, regardless of the PAA blending, as confirmed by FTIR and DSC measurements. Additionally, living cells from Antheraea pernyi and Bombyx mori insect tissues are shown to grow effectively on the composite films. Maximum growth levels occur when the cultivation flask is coated with the material in SF/PAA ratios of 75:25 to 25:75. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1963–1970, 2002; DOI 10.1002/app.10491  相似文献   
16.
The work presented here discusses a new technique for preparing silk fibers and films with persistent antimicrobial activity through use of metallic dyestuffs during the fiber dyeing process. The length of the silk fibers investigated contracted when the fibers were immersed in concentrated neutral salt solutions, such as calcium or potassium nitrate, at elevated temperature levels. The birefringence and molecular orientation of the silk fibroin molecules became less ordered by the action of the neutral salt solutions, resulting in increased dyestuff absorption. Subsequently, contracted silk fibers were dyed with metallic dyestuffs containing Cr or Cu for the purpose of obtaining silk fibers with antimicrobial activity. Silk fibers dyed with metallic dyestuffs showed significant antimicrobial activity against the plant pathogen Cornebacterium and the human pathogen Coli bacillus. Tensile strength of the silk fibers after the salt shrinking and dyeing processes did not show a significant change, whereas the elongation at break was increased slightly. The techniques described here for preparing significantly active antimicrobial silk fibers are effective and economic ways of providing new materials for industrial and biomedical applications. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1181–1188, 2002  相似文献   
17.
Bombyx mori silk fibers were chemically modified by acylation with aromatic acid anhydrides, such as phthalic and o-sulfobenzoic anhydrides. We examined the reactivity of these modifying agents toward silk fibers, the physical and thermal properties, and the dyeing behavior with acid and cationic dyes. The o-sulfobenzoic anhydride was more reactive toward silk fibroin than phthalic anhydride. The amount of both basic and acidic amino acid residues decreased after modification with aromatic acid anhydrides. The moisture regain of silk treated with phthalic anhydride remained almost unchanged, while that of the samples modified with o-sulfobenzoic anhydride increased linearly as the weight gain increased. Chemically modified silk fabrics showed improved crease recovery behavior, even though phthalic anhydride seemed more effective at comparatively low weight gain. The modification of silk with o-sulfobenzoic anhydride caused a drastic a reduction of acid dye uptake and enhanced the affinity of silk for cationic dye. Silk fibers did not show any significant change in thermal behavior, regardless of the modification with o-sulfobenzoic anhydride. Silk fibers modified with phthalic anhydride showed on differential scanning calorimetry (DSC) curves a minor and broad endothermic peak at around 210°C, attributed probably to the breaking of the crosslinks formed between adjacent fibroin molecules.  相似文献   
18.
The feasibility of synthesizing crystalline ZrO2 films at low temperatures was evaluated using an electrochemical method. Anodization of zirconium-metal substrates in tetraethyl ammonium hydroxide (TEAOH) solutions under constant applied voltage conditions at ∼25° and ∼100°C was investigated. The chemistry and microstructure of the anodic oxide films deposited on the zirconium-metal substrates under the above conditions were characterized using X-ray diffractometry and scanning electron microscopy. The results indicated that, with sufficiently high applied voltages (in the range of 300 V) at pH ∼9.5, the initial dissolution of the zirconium anode resulted in the local saturation of the electrolyte solution with Zr4+, forming Zr(OH)5, which deposited electrophoretically on the anode as a thick, gelatinous film at 25°C. Similar treatments at 100°C resulted in an in situ crystallization of Zr(OH)4 gel to monoclinic ZrO2.  相似文献   
19.
The graft–copolymerization of silk with methacrylamide (MAA), 2‐hydroxyethyl methacrylate (HEMA), and methyl methacrylate (MMA) was studied using three different free‐radical initiators: an inorganic peroxide [ammonium persulfate (APS)] and two azo compounds [2,2′‐azobisisobutyronitrile (AIBN) and 2,2′‐azobis(2‐methylpropionamidine) dihydrochloride (ADC)]. The rate and yield of grafting followed the order: APS > AIBN > ADC. The performance of AIBN was close to that of APS in terms of weight gain attained. The degree of yellowing of grafted silk varied as a function of the initiator–monomer system used. APS induced the highest degree of yellowing, regardless of which monomer was used, whereas silk grafted with the MAA/AIBN system displayed the lowest level of yellowing. Moisture regain of grafted silk changed as a function of the hydrophilic/hydrophobic character of the grafted polymer, regardless of the kind of initiator used. Accordingly, tensile properties showed a tendency to decrease with increasing weight gain of grafted silk, the extent of which was independent of the kind of monomer and initiator used. The different initiators did not induce any appreciable change in the fine structure of silk, as demonstrated by optical measurements. Uneven surface deposition of homopolymer was detected to variable extent with MMA and HEMA grafting, whereas the surface of MAA‐grafted silk was completely free of any foreign deposit, independently of the initiator used. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1401–1409, 2001  相似文献   
20.
Silk fabrics were modified by treatment with tannic acid (TA) solution or by acylation with ethylenediaminetetraacetic (EDTA) dianhydride. Kinetics of modification with TA and acylation with EDTA–dianhydride was investigated. The physico‐mechanical properties of silk fabrics acylated with EDTA–dianhydride remained unchanged regardless of chemical modification. The absorption of metal cations (Ag+, Cu2+) by untreated and modified silk fabrics was studied as a function of the kind of modifying agent, weight gain, and pH of the metal solution. The absorption of Cu2+ at alkaline pH was not significantly influenced by chemical modification of the silk substrate. The absorption of Ag+ by acylated silk remained at a level as low as untreated silk, while was enhanced by TA. The higher the content of TA, the higher the absorption of Ag+. With respect to the pH of the metal solution, the acylation with EDTA–dianhydride enabled silk to absorb and bind metal cations even in the acidic and neutral pH range, where tannic acid had no effect. Medium to high levels of metal desorption were exhibited by untreated and modified silk fabrics towards the metal cations, with the only exception of the silk–tannic acid–Ag complex, which displayed an extraordinary stability. All metal‐containing silks exhibited significant antibacterial activity. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 297–303, 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号