首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1699篇
  免费   74篇
  国内免费   7篇
电工技术   19篇
综合类   3篇
化学工业   268篇
金属工艺   36篇
机械仪表   60篇
建筑科学   38篇
矿业工程   4篇
能源动力   216篇
轻工业   206篇
水利工程   12篇
石油天然气   9篇
无线电   219篇
一般工业技术   386篇
冶金工业   83篇
原子能技术   10篇
自动化技术   211篇
  2023年   27篇
  2022年   47篇
  2021年   47篇
  2020年   61篇
  2019年   44篇
  2018年   88篇
  2017年   61篇
  2016年   64篇
  2015年   40篇
  2014年   56篇
  2013年   179篇
  2012年   91篇
  2011年   101篇
  2010年   74篇
  2009年   101篇
  2008年   70篇
  2007年   62篇
  2006年   47篇
  2005年   35篇
  2004年   37篇
  2003年   28篇
  2002年   23篇
  2001年   13篇
  2000年   11篇
  1999年   10篇
  1998年   16篇
  1997年   18篇
  1996年   13篇
  1995年   23篇
  1994年   14篇
  1993年   18篇
  1992年   23篇
  1991年   23篇
  1990年   5篇
  1989年   14篇
  1988年   13篇
  1987年   7篇
  1986年   14篇
  1985年   24篇
  1984年   26篇
  1983年   23篇
  1982年   18篇
  1981年   16篇
  1980年   12篇
  1979年   10篇
  1976年   6篇
  1975年   3篇
  1974年   6篇
  1973年   3篇
  1971年   4篇
排序方式: 共有1780条查询结果,搜索用时 31 毫秒
61.
Microbial production of ethanol and 2,3-butanediol (2,3-BD) from agro-residues has been attracting interest because of their applications in various industries, including generation of biofuel molecules. In the present investigation, the hemicellulosic fraction of corncob was hydrolyzed by indigenous holocellulase from novel psychrotolerant Aspergillus niger SH3 resulting in high xylose release (34.61?g?L?1), followed by the bioconversion of xylose to ethanol and 2,3-BD. Taguchi design was adopted to optimize the process which resulted in 5.25- and 3.31-fold increase in 2,3-BD (12.18?±?0.53?g?L?1) and ethanol (4.08?±?0.03?g?L?1), as compared with un-optimized condition. For the first time, co-production of ethanol and 2,3-BD from the corncob hemicellulosic hydrolysate was performed using a newly isolated Klebsiella oxytoca XF7 strain, under the optimized fermentation conditions. These results suggest that K. oxytoca XF7 is a promising candidate for co-production of ethanol and 2,3-BD, with high xylose conversion efficiency (96.65%), facilitating the economical production of biofuel molecules.  相似文献   
62.
In this study curtailing of idle current in 1T1C and 1T1M DRAM cells by increasing threshold voltage during holding state is analyzed. This is attained by connecting the bulk to source in the active phases and pulling it below source potential throughout the holding phase. The proposed technique leads to body effect which affects the threshold voltage improving leakage current. The 1T1C and 1T1M discussed in this paper are volatile and non-volatile (memristor based) respectively. Memory design is fast becoming the pacemaker in the modern technology design which now requires DRAM cells with prolonged holding period and low idle power hence the need for lowering the leakage current. The dynamic nature of the 1T1C is due to charge leakage and the leakage current flowing through the 1T1M cell affects mem-resistance all this leading to state distortion. Idle current has of-late become one of the major contributors of power in large memory arrays in which in-active periods now dominates active period and by this technique idle power is reduced in both volatile and non-volatile cells. The proposed technique was implemented and simulations were done at different voltage levels at 45 nm technology. The method improved the leakage current, holding time and leakage power but at the expense of area and writing power.  相似文献   
63.
64.
This study aimed to evaluate the influence of plasma treatment time, bacterial exposure time to PAW and bacterial species on the inactivation efficacy of plasma-activated water (PAW), with additional investigation of the inactivation mechanisms of PAW. Six bacterial species, including Listeria innocua, Staphyloccus aureus, Escherichia coli, Pseudomonas fluorescens, Shewanella putrefaciens and Aeromonas hydrophila were selected as the representative bacteria. The initial bacterial concentration was around 7 log CFU ml−1 after mixing with PAW, and the inactivation efficacy was measured after different exposure times during the 4 °C storage. Scanning electron microscopy (SEM) images of the bacteria after PAW treatment were carried out to inspect the cell structure damage, and physicochemical properties of PAW, including pH, conductivity and long-living reactive species of H2O2, , and , were examined. The results showed that the inactivation efficacy of PAW was positively correlated with plasma treatment time and bacterial exposure time, and for the species examined in this study, the Gram-negative species were more sensitive to PAW than the Gram-positive species. Cell structure damage, including shrinkage, distortion, or holes, was observed after PAW treatment. The pH of PAW was acidified to 2.5–2.9, and conductivity was significantly increased to 518.0 μs cm−1. and H2O2 were reduced during the 48 h storage, while an increased concentration was observed for . This study demonstrated that the processing parameters of plasma treatment time, exposure time and characteristics of bacteria can significantly affect the inactivation efficacy of PAW.  相似文献   
65.
66.
Real-time sensing plays an important role in ensuring the reliability of industrial wireless sensor networks (IWSNs). Sensor nodes in IWSNs have inherent limitations that give rise to different anomalies in the network. These anomalies can lead to disastrous and harmful situations or even serious system failures. This article presents a formulation to the design of an anomaly detection scheme for detecting the anomalous node along with the type of anomaly. The proposed scheme is divided into two major parts. First, spatiotemporal correlation within a cluster is obtained for the normal and anomalous behavior of sensor nodes. Second, the multilevel hybrid classifier is used by combining the sequential minimal optimization support vector machine (SMO-SVM) as a binary classifier with optimally pruned extreme learning machine (OP-ELM) as a multiclass classifier for detection of an anomalous node and type of anomalies, respectively. Mahalanobis distance-based lightweight K-Medoid clustering is used to build a new set of training datasets that represents the original training dataset, by significantly reducing the training time of a multilevel hybrid classifier. Results are analyzed using standard WSN datasets. The proposed model shows high accuracy, i.e., 94.79% and detection rate, i.e., 94.6% with a reduced false positive rate as compared to existing hybrid methods.  相似文献   
67.
U. Tiwari  E. Cummins 《LWT》2012,47(2):413-420
The objective of this study was to develop a β-glucan human exposure assessment model for a barley and a oat based bread and to compare the resulting exposure to the current FDA recommendation for a health promoting effect (3 g β-glucan/day, 0.75 g/portion of β-glucan). Three formulated barley and oat based breads with 30% (S1), 50% (S2) and 70% (S3) substitution of wheat flour were used in the Monte Carlo simulation model to predict human consumption levels. The level of soluble β-glucan was found to reach 0.77 g/portion for some barley and oat based breads with a substitution level of S3. Under normal consumption patterns, consumption of barley based bread can meet up to 50% of the FDA recommended intake with S1, 70% with S2, and 100% with S3, whereas by consuming an oat based bread the FDA recommended intake is met 30% with S1, 50% with S2 and 70% with S3. The model predicted that total cholesterol (TC) lowered with an increase intake of β-glucan content from ?0.27 to ?0.30 mmol/l and ?0.18 to ?0.29 mmol/l from S1 to S3 for barley and oats based bread, respectively. No significant change was noted for the blood glucose level.  相似文献   
68.
69.
The present work attempts to investigate the propagation of one-dimensional electromagneto-thermoelastic plane waves in an isotropic unbounded thermally and electrically conducting media with finite conductivity in the context of the theory of thermoelasticity of Green and Naghdi type-II. The heat conduction equation is affected with the Thomson coe?cient. Basic governing equations are modified by using Green–Naghdi theory of type-II. Our problem formulation derives two different systems. The first system is found to be coupled with the thermal field and represents the longitudinal wave. However, the second system represents transverse wave that is uncoupled with the thermal field. In both the cases, we identify waves that are affected with the magnetic field. Asymptotic expansions of dispersion relation solutions and various components of plane waves such as phase velocity, specific loss, and penetration depth are derived analytically for high- and low-frequency values in all cases. Analytical results predicting the limiting behavior of longitudinal and transverse waves are verified with the numerical results. The results of the present study are compared with the results of the thermoelastic case, and a detailed analysis of the effects of presence of the magnetic field under this theory has been presented.  相似文献   
70.
The chlor-alkali process has come a long way from the days of the diaphragm and mercury cell process to the present membrane cell process, with huge reduction in power consumption and hence its carbon footprint. Although there is reduction in the release of highly toxic mercury to the environment, there is increased release of less harmful substances such as chloride and chlorate because the membrane cell is less tolerant to contaminants, and hence requires higher purity brine. The technology providers have continued to improve upon the process to reduce power consumption and to reduce the plant’s footprint. This review looks briefly at the three technologies and attempts to look at where we currently are at. All new chlor-alkali plants being built are of the membrane process. This review mentions some of the areas where improvements can be made to the membrane process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号