首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
化学工业   7篇
机械仪表   1篇
建筑科学   1篇
能源动力   1篇
轻工业   2篇
无线电   4篇
一般工业技术   5篇
冶金工业   1篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
21.
Electronic waste (e-waste) grows in parallel with the increasing need for consumer electronics. This, unfortunately, is leading to pollution and massive ecological problems worldwide. A solution to this problem is the use of transient electronics. While transiency of a few components such as transistors and batteries have been proposed already, it is crucial to have all components in electronic devices to be transient. Therefore, the transiency of more electronic components should be demonstrated to alleviate the e-waste problem. Herein, multifunctional nanocomposite electrodes are fabricated using poly(vinyl alcohol), carbon black, and activated carbon. These simple electrodes are then used to fabricate physically transient supercapacitors, triboelectric nanogenerators, and capacitive sensors. Transient supercapacitors are used numerous times with excellent supercapacitive behavior before being discarded, which show promise as an energy storage component for transient systems. The fabricated transient triboelectric nanogenerators are used to harvest mechanical energy, eliminated the need for an external power supply, paving the way to self-powered devices, such as a touchpad as demonstrated herein. The fabricated transient capacitive sensors, on the other hand, have shown long linear sensitivities and offered waste-free monitoring of physiological signals and body motions.  相似文献   
22.
Free-standing films that display high strength and high electrical conductivity are critical for flexible electronics, such as electromagnetic interference (EMI) shielding coatings and current collectors for batteries and supercapacitors. 2D Ti3C2Tx flakes are ideal candidates for making conductive films due to their high strength and metallic conductivity. It is, however, challenging to transfer those outstanding properties of single MXene flakes to macroscale films as a result of the small flake size and relatively poor flake alignment that occurs during solution-based processing. Here, a scalable method is shown for the fabrication of strong and highly conducting pure MXene films containing highly aligned large MXene flakes. These films demonstrate record tensile strength up to ≈570 MPa for a 940 nm thick film and electrical conductivity of ≈15 100 S cm−1 for a 214 nm thick film, which are both the highest values compared to previously reported pure Ti3C2Tx films. These films also exhibit outstanding EMI shielding performance (≈50 dB for a 940 nm thick film) that exceeds other synthetic materials with comparable thickness. MXene films with aligned flakes provide an effective route for producing large-area, high-strength, and high-electrical-conductivity MXene-based films for future electronic applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号