首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5815篇
  免费   276篇
  国内免费   21篇
电工技术   57篇
综合类   23篇
化学工业   1116篇
金属工艺   91篇
机械仪表   128篇
建筑科学   301篇
矿业工程   10篇
能源动力   240篇
轻工业   359篇
水利工程   55篇
石油天然气   31篇
无线电   533篇
一般工业技术   1177篇
冶金工业   846篇
原子能技术   46篇
自动化技术   1099篇
  2023年   52篇
  2022年   93篇
  2021年   185篇
  2020年   133篇
  2019年   177篇
  2018年   213篇
  2017年   136篇
  2016年   167篇
  2015年   133篇
  2014年   199篇
  2013年   353篇
  2012年   315篇
  2011年   353篇
  2010年   258篇
  2009年   265篇
  2008年   274篇
  2007年   277篇
  2006年   202篇
  2005年   194篇
  2004年   169篇
  2003年   175篇
  2002年   145篇
  2001年   86篇
  2000年   101篇
  1999年   75篇
  1998年   237篇
  1997年   164篇
  1996年   99篇
  1995年   108篇
  1994年   80篇
  1993年   71篇
  1992年   60篇
  1991年   45篇
  1990年   32篇
  1989年   32篇
  1988年   39篇
  1987年   35篇
  1986年   19篇
  1985年   29篇
  1984年   20篇
  1983年   15篇
  1982年   26篇
  1981年   29篇
  1980年   22篇
  1979年   21篇
  1978年   17篇
  1977年   26篇
  1976年   49篇
  1975年   14篇
  1972年   13篇
排序方式: 共有6112条查询结果,搜索用时 15 毫秒
981.
Wildlife is chronically exposed to various sources of ionizing radiations, both environmental or anthropic, due to nuclear energy use, which can induce several defects in organisms. In invertebrates, reproduction, which directly impacts population dynamics, has been found to be the most radiosensitive endpoint. Understanding the underlying molecular pathways inducing this reproduction decrease can help in predicting the effects at larger scales (i.e., population). In this study, we used a life stage dependent approach in order to better understand the molecular determinants of reproduction decrease in the roundworm C. elegans. Worms were chronically exposed to 50 mGy·h−1 external gamma ionizing radiations throughout different developmental periods (namely embryogenesis, gametogenesis, and full development). Then, in addition to reproduction parameters, we performed a wide analysis of lipids (different class and fatty acid via FAMES), which are both important signaling molecules for reproduction and molecular targets of oxidative stress. Our results showed that reproductive defects are life stage dependent, that lipids are differently misregulated according to the considered exposure (e.g., upon embryogenesis and full development) and do not fully explain radiation induced reproductive defects. Finally, our results enable us to propose a conceptual model of lipid signaling after radiation stress in which both the soma and the germline participate.  相似文献   
982.
Recent developments in polymer nanocomposites have led to improvements in conventional short-term, but the long-term mechanical properties have received little attention. The objective of the present study was to characterize the effect of nanoparticles on the fatigue crack initiation and propagation mechanisms and on the fatigue properties of polyamide-6 (PA6) nanocomposite (PA6NC) prepared by in situ polymerization with montmorillonite clay. Two approaches were employed: fatigue life measurements and crack growth monitoring. Compared with non-filled PA6 at the same stress amplitude, the number of cycles to fracture was higher for the nanocomposite, which suggests an increase in the intrinsic resistance of the material to crack initiation. However, the crack growth rate results indicated that nanoparticles decreased the resistance to crack propagation. Post-fatigue fractographic observations indicated a change in the fatigue crack propagation mechanism resulting from the addition of nanoparticles, primarily attributed to the increase in yield stress, which favors the development of a fibrillated deformation zone. The fibrillation process in the relatively high crack propagation rate regime appeared to be preceded by plastic deformation at approximately constant volume. Most of the effect of nanoparticles on the fatigue behavior and properties results probably from the mechanical reinforcement on the microstructure and its effect on the yield stress and Young's modulus rather than from the effect of the inorganic filler to act as a stress concentrator. Polym. Compos. 25:433–441, 2004. © 2004 Society of Plastics Engineers.  相似文献   
983.
984.
In the present study we report the electrodeposition and characterization of CIS and CIGS thin films and a post-deposition thermal processing in vacuum to improve the film stoichiometry by incorporating additional In, Ga and Se. Different kinds of analyses showed that CIS as well as CIGS possess a very thin In-rich surface n-layer. The formation and characterization of solar cell structures from the electrodeposited precursor with the configuration glass/Cr/Mo/CIS(CIGS)/CdS/ZnO/MgF2 is also reported. The optoelectronic properties such as Voc, Isc, FF, η etc. of the cells are presented.  相似文献   
985.
Biofuel production from algae feedstock has become a topic of interest in the recent decades since algae biomass cultivation is feasible in aquaculture and does therefore not compete with use of arable land. In the present work, hydrothermal liquefaction of both microalgae and macroalgae is evaluated for biofuel production and compared with transesterifying lipids extracted from microalgae as a benchmark process. The focus of the evaluation is on both the energy and carbon footprint performance of the processes. In addition, integration of the processes with an oil refinery has been assessed with regard to heat and material integration. It is shown that there are several potential benefits of co-locating an algae-based biorefinery at an oil refinery site and that the use of macroalgae as feedstock is more beneficial than the use of microalgae from a system energy performance perspective. Macroalgae-based hydrothermal liquefaction achieves the highest system energy efficiency of 38.6%, but has the lowest yield of liquid fuel (22.5 MJ per 100 MJalgae) with a substantial amount of solid biochar produced (28.0 MJ per 100 MJalgae). Microalgae-based hydrothermal liquefaction achieves the highest liquid biofuel yield (54.1 MJ per 100 MJalgae), achieving a system efficiency of 30.6%. Macro-algae-based hydrothermal liquefaction achieves the highest CO2 reduction potential, leading to savings of 24.5 resp 92 kt CO2eq/year for the two future energy market scenarios considered, assuming a constant feedstock supply rate of 100 MW algae, generating 184.5, 177.1 and 229.6 GWhbiochar/year, respectively. Heat integration with the oil refinery is only possible to a limited extent for the hydrothermal liquefaction process routes, whereas the lipid extraction process can benefit to a larger extent from heat integration due to the lower temperature level of the process heat demand.  相似文献   
986.
We report the growth and characterization of improved efficiency wide‐bandgap ZnO/CdS/CuGaSe2 thin‐film solar cells. The CuGaSe2 absorber thickness was intentionally decreased to better match depletion widths indicated by drive‐level capacitance profiling data. A total‐area efficiency of 9·5% was achieved with a fill factor of 70·8% and a Voc of 910 mV. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   
987.
Offshore wind turbines have the potential to capture the high‐quality wind resource. However, the significant wind and wave excitations may result in excessive vibrations and decreased reliability. To reduce vibrations, passive structural control devices, such as the tuned mass damper (TMD), have been used. To further enhance the vibration suppression capability, inerter‐based absorbers (IBAs) have been studied using the structure‐based approach, that is, proposing specific stiffness‐damping‐inertance elements layouts for investigation. Such an approach has a critical limitation of being only able to cover specific IBA layouts, leaving numerous beneficial configurations not identified. This paper adopts the newly introduced structure‐immittance approach, which is able to cover all network layout possibilities with a predetermined number of elements. Linear monopile and spar‐buoy turbine models are first established for optimisation. Results show that the performance improvements can be up to 6.5% and 7.3% with four and six elements, respectively, compared with the TMD. Moreover, a complete set of beneficial IBA layouts with explicit element types and numbers have been obtained, which is essential for next‐step real‐life applications. In order to verify the effectiveness of the identified absorbers with OpenFAST, an approach has been established to integrate any IBA transfer functions. It has been shown that the performance benefits preserve under both the fatigue limit state (FLS) and the ultimate limit state (ULS). Furthermore, results show that the mass component of the optimum IBAs can be reduced by up to 25.1% (7,486 kg) to achieve the same performance as the TMD.  相似文献   
988.
989.
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号