首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56800篇
  免费   3262篇
  国内免费   193篇
电工技术   817篇
综合类   79篇
化学工业   12185篇
金属工艺   2311篇
机械仪表   3534篇
建筑科学   1308篇
矿业工程   29篇
能源动力   2432篇
轻工业   4449篇
水利工程   298篇
石油天然气   91篇
武器工业   2篇
无线电   9177篇
一般工业技术   12089篇
冶金工业   4664篇
原子能技术   723篇
自动化技术   6067篇
  2024年   56篇
  2023年   627篇
  2022年   975篇
  2021年   1652篇
  2020年   1189篇
  2019年   1317篇
  2018年   1635篇
  2017年   1572篇
  2016年   1983篇
  2015年   1488篇
  2014年   2382篇
  2013年   3503篇
  2012年   3624篇
  2011年   4391篇
  2010年   3215篇
  2009年   3351篇
  2008年   3216篇
  2007年   2520篇
  2006年   2338篇
  2005年   1986篇
  2004年   1826篇
  2003年   1725篇
  2002年   1533篇
  2001年   1308篇
  2000年   1161篇
  1999年   1111篇
  1998年   1854篇
  1997年   1212篇
  1996年   977篇
  1995年   682篇
  1994年   573篇
  1993年   481篇
  1992年   345篇
  1991年   332篇
  1990年   318篇
  1989年   293篇
  1988年   238篇
  1987年   209篇
  1986年   167篇
  1985年   146篇
  1984年   114篇
  1983年   92篇
  1982年   47篇
  1981年   59篇
  1980年   49篇
  1979年   42篇
  1978年   44篇
  1977年   58篇
  1976年   88篇
  1975年   30篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
951.
Nanocomposites based on thermoplastic elastomeric polyurethane (TPU) and layered silicate clay were prepared by in situ synthesis. The properties of nanocomposites of TPU with unmodified clay were compared with that of organically modified clay. The nanocomposites of the TPU and organomodified clay showed better dispersion and exhibited superior properties. Exfoliation of the clay layers was observed at low organoclay contents, whereas an intercalated morphology was observed at higher clay contents. As one of major purposes of this study, the effect of the silicate layers in the nanocomposites on the order–disorder transition temperature (TODT) of the TPU was evaluated from the intensity change of the hydrogen‐bonded and free carbonyl stretching peaks and from the peak position change of the N? H bending peak. The presence of the organoclay increased TODT by approximately 10°C, which indicated improved stability in the phase‐separated domain structure. The layered silicate clay caused a tremendous improvement in the stiffness of the TPU; meanwhile, a reduction in the ultimate elongation was observed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3048–3055, 2006  相似文献   
952.
Vinyl pivalate (VPi) was suspension‐polymerized to synthesize high molecular weight (HMW) poly(vinyl pivalate) (PVPi) with a high conversion above 95% for a precursor of syndiotacticity‐rich HMW poly(vinyl alcohol) (PVA). Also, the effects of the polymerization conditions on the conversion, molecular weight, and degree of branching (DB) of PVPi and PVA prepared by the saponification of PVPi were investigated. Bulk polymerization was slightly superior to suspension polymerization in increasing the molecular weight of PVA. On the other hand, the latter was absolutely superior to the former in increasing the conversion of the polymer, indicating that the suspension polymerization rate of VPi was faster than that of the bulk one. These effects could be explained by a kinetic order of a 2,2′‐azobis(2,4‐dimethylvaleronitrile) concentration calculated by the initial rate method. Suspension polymerization of VPi at 55°C by controlling various polymerization factors proved to be successful in preparing PVA of HMW [number‐average degree of polymerization (Pn): 8200–10,500], high syndiotactic diad content (58%), and very high yield (ultimate conversion of VPi into PVPi: 94–98%). In the case of the bulk polymerization of VPi at the same conditions, the maximum Pn and conversion of 10,700–11,800 and 32–43% were obtained, respectively. The DB was lower and the Pn was higher with PVA prepared from PVPi polymerized at lower initiator concentrations. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 832–839, 2003  相似文献   
953.
Water‐soluble high molecular weight (HMW) syndiotactic poly(vinyl alcohol) (s‐PVA) microfibrillar fibers were prepared by the saponification with various conditions such as amount of alkali solution, saponification temperature, and saponification concentration from copoly(vinyl pivalate (VPi)/vinyl acetate (VAc)) copolymerized using various VPi/VAc feed ratios. To produce s‐PVA microbrillar fibers having various water‐soluble temperatures for many industrial applications, the intrinsic viscosities, syndiotactic diad (S‐diad) contents, and degrees of saponification (DS)s of PVAs were finely controlled to 1.2–3.6 dL/g, 56.3–58.3%, and 91.4–98.3%, respectively. Through a series of experiments, it was found that the amount of alkali may alter the structure of the saponified polymers, primarily the DS, and the structural variation changes viscosity. That is, intrinsic viscosity was sharply decreased as the amount of alkali solution was increased. DS was increased with an increase in the amount of alkali solution. S‐diad content was increased with an increase in the VPi content. HMW s‐PVA microfibrillar fibers having S‐diad content of 56.3–58.3% prepared by the saponification of copoly(VPi/VAc) were completely soluble in water at 100°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1482–1487, 2003  相似文献   
954.
Composites based on poly(diphenyl amine) (PDPA) and multiwall carbon nanotubes (MWNTs) were prepared by chemical oxidative polymerization through two different approaches: in situ polymerization and intimate mixing. In in situ polymerization, DPA was polymerized in the presence of dispersed MWNTs in sulfuric acid medium for different molar composition ratios of MWNT and DPA. Intimate mixing of synthesized PDPA with MWNT was also used for the preparation of PDPA/MWNT composites. Transmission electron microscopy revealed that the diameter of the tubular structure for the composite was 10–20 nm higher than the diameter of pure MWNT. Scanning electron microscopy provided evidence for the differences in the morphology between the MWNTs and the composites. Raman and Fourier transform IR (FTIR) spectroscopy, thermogravimetric analysis, X‐ray diffraction, and UV–visible spectroscopy were used to characterize the composites and reveal the differences in the molecular level interactions between the components in the composites. The Raman and FTIR spectral results revealed doping‐type molecular interactions and coordinate covalent‐type interactions between MWNT and PDPA in the composite prepared by in situ polymerization and intimate mixing, respectively. The backbone structure of PDPA in the composite decomposed at a higher temperature (>340°C) than the pristine PDPA (~300°C). This behavior also favored the molecular level interactions between MWNT and PDPA in the composite. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3721–3729, 2006  相似文献   
955.
Hotmelt pressure sensitive adhesives (PSAs) usually contain styrenic block copolymers like styrene–isoprene–styrene (SIS), SBS, SEBS, tackifier, oil, and additives. These block copolymers individually reveal no tack. Therefore, a tackifier is a low molecular weight material with high glass transition temperature (Tg), and imparts the tacky property to PSA. The SIS block copolymer with different diblocks was blended with hydrogenated dicyclopentadiene (H‐DCPD tackifier), which has three kinds of Tg. PSA performance was evaluated by probe tack, peel strength, and shear adhesion failure temperature. PSA is a viscoelastic material, so that its performance is significantly related to the viscoelastic properties of PSAs. We tested the viscoelastic properties by dynamic mechanical analysis and the thermal properties by differential scanning calorimeter to investigate the relation between viscoelastic properties and PSA performance. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 2839–2846, 2006  相似文献   
956.
P. Kim  J.B. Joo  H. Kim  W. Kim  Y. Kim  I.K. Song  J. Yi 《Catalysis Letters》2005,104(3-4):181-189
Mesoporous Ni–alumina catalysts (Ni–alumina-pre and Ni–alumina-post) were synthesized by one-step sol–gel method using micelle complex comprising lauric acid and nickel ion as a template with metal source and using aluminum sec-butoxide as an aluminum source. The Ni–alumina catalysts showed relatively high surface areas (303 m2/g for Ni–alumina-pre and 331 m2/g for Ni–alumina-post) and narrow pore size distributions centered at ca. 4 nm. Highly dispersed Ni particles were observed in the Ni–alumina catalysts (ca. 5.2 nm for Ni–alumina-pre and ca. 6.8 nm for Ni–alumina-post) after reduction at 550 °C, while a catalyst prepared without a template (NiAl-comp) exhibited inferior porosity with large metal particles (ca. 12.3 nm). Mesoporous Ni–alumina catalysts with different porosity were obtained by employing different hydrolysis step of aluminum source. When aluminum source was hydrolyzed under the presence of micelle complex, a supported Ni catalyst with highly developed framework mesoporosity was obtained (Ni–alumina-post). On the other hand, when aluminum source was pre-hydrolyzed followed by mixing with micelle solution, the resulting catalyst (Ni–alumina-pre) retained high portion of textural porosity. It was revealed that the hydrolysis method employed in this research affected not only textural properties but also metal-support interaction in the Ni–alumina catalysts. It was also found that the Ni–alumina-pre catalyst exhibited weaker interaction between nickel and alumina than the Ni–alumina-post, leading to higher degree of reduction in the Ni–alumina-pre catalyst. In the hydrodechlorination of o-dichlorobenzene, the Ni–alumina catalysts exhibited better catalytic performance than the NiAl-comp catalyst, which was attributed to higher metal dispersion in the Ni–alumina catalysts. In particular, the Ni–alumina-pre catalyst showing 1.5 times higher degree of reduction and larger amounts of o-dichlorobenzene adsorption exhibited better catalytic performance than the Ni–alumina-post catalyst.  相似文献   
957.
A polystyrene (PS)/poly(butyl acrylate) (PBA) composite emulsion was produced by seeded emulsion polymerization of butyl acrylate (BA) with PS seed particles which were prepared by emulsifier‐free polymerization of styrene with potassium persulfate (KPS) under a nitrogen atmosphere at 70°C for 24 h with stirring at 60 rpm and swelled with the BA monomer in an ethanol/water medium. The structure of the PS/PBA composite particles was confirmed by the presence of the characteristic absorption band attributed to PS and PBA from FTIR spectra. The particles for pure PS and PS/PBA with a low content of the BA monomer were almost spherical and regular. As the BA monomer content was increased, the particle size of the PS/PBA composite particles became larger, and more golf ball‐like particles were produced. The surface morphology of the PS/PBA composite particles was investigated by AFM and SEM. The Tg's attributed to PS and PBA in the PS/PBA composite particles were found at 110 and ?49°C, respectively. The thermal degradation of the pure PS and PS/PBA composite particles occurred in one and two steps, respectively. With an increasing amount of PBA, the initial thermal decomposition temperature increased. On the contrary the residual weight at 450°C decreased with an increasing amount of PBA. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 595–601, 2003  相似文献   
958.
Biodegradable polymers and the hydrogels have been increasingly applied in a variety of biomedical fields and pharmaceutics. α,β‐Poly(N‐2‐hydroxyethyl‐DL ‐aspartamide), PHEA, one of poly(amino acid)s with hydroxyethyl pendants, are known to be biodegradable and biocompatible, and has been studied as an useful biomaterial, especially for drug delivery, via appropriate structural modification. In this work, hydrogels based on PHEA were prepared by two‐step reaction, that is, the crosslinking of polysuccinimide, the precursor polymer, with oligomeric PEG or PEI‐diamines and the following nucleophilic ring‐opening reaction by ethanolamine. Soft hydrogels possessing varying degrees of gel strength could be prepared easily, depending on the amount of different crosslinking reagents. The swelling degrees, which were in the range of 10–40 g–water/dry gel, increased somewhat at higher temperature, and also at alkaline pH of aqueous solution. A typical hydrogel remained almost unchanged for 1 week, at 37°C in phosphate buffer of pH 7.4, and then seemed to degrade slowly as time. A porous scaffold could be fabricated by the freeze drying of water‐swollen gel. The PHEA‐based hydrogels have potential for useful biomaterial applications including current drug delivery system. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3741–3746, 2003  相似文献   
959.
Lily Kim 《Carbon》2005,43(7):1453-1459
We have developed a simple new method to control the diameter of carbon nanotubes (CNTs) using catalytic nanoparticle arrays fabricated by filling the pores of well-ordered porous anodic aluminum oxide (AAO) templates with a metal ion solution. Fe ion solution was used to fill the pores in which Co had been deposited electrochemically, and then the template was dried naturally on a magnet. After this process, the pores were widened in NaOH solution. Well-graphitized multi-walled CNTs were grown from almost all the pores and were very long in length and homogeneous in diameter. We were able to control the diameter of CNTs, simply, by changing the concentration of iron ion solution. For example, the average outer diameters of the CNTs are 7 ± 1.5, 13 ± 1, and 17 ± 1 nm when the concentrations of Fe ion in their mother solutions were 1.0 × 10−3, 3.0 × 10−3, and 6.0 × 10−3 M, respectively. The inner diameters of these CNTs corresponded to the calculated diameters of Fe nanoparticles by assuming that all Fe ions contained in each pore are reduced to a single nanoparticle. This means that homogeneous nanoparticles are made in each pore. Our new method could be used to fabricate homogeneous nanoparticles from most metal ion solutions.  相似文献   
960.
Experiments were carried out to determine the effects of introducing nitrogen during sintering on the formation of the surface gradient zone for Ti(C,N)-based cermets. WC was used as a secondary carbide in a Ti(C,N)–Ni/Co system, and processing was carried out in vacuum, and under various nitrogen conditions (at 1torr). Nitrogen was introduced during various stages of the sintering (above 1300°C). The introduction of nitrogen during the heating stage facilitated the formation of a (Ti,W)(C,N)-enriched layer to a greater extent than the vacuum conditions. A thermodynamic calculation revealed that denitrification occurs during sintering, even when nitrogen pressure is applied. A nitrogen atmosphere during the heating stage is effective in retarding the dissolution of WC in the cermet matrix. The introduction of nitrogen during the holding or cooling stages also led to an enrichment in the binder phase near the surface. The thickness of the stratified binder layer was strongly related to the cooling rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号