首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56885篇
  免费   3177篇
  国内免费   193篇
电工技术   817篇
综合类   79篇
化学工业   12185篇
金属工艺   2311篇
机械仪表   3534篇
建筑科学   1308篇
矿业工程   29篇
能源动力   2432篇
轻工业   4449篇
水利工程   298篇
石油天然气   91篇
武器工业   2篇
无线电   9177篇
一般工业技术   12089篇
冶金工业   4664篇
原子能技术   723篇
自动化技术   6067篇
  2024年   56篇
  2023年   627篇
  2022年   975篇
  2021年   1652篇
  2020年   1189篇
  2019年   1317篇
  2018年   1635篇
  2017年   1572篇
  2016年   1983篇
  2015年   1488篇
  2014年   2382篇
  2013年   3503篇
  2012年   3624篇
  2011年   4391篇
  2010年   3215篇
  2009年   3351篇
  2008年   3216篇
  2007年   2520篇
  2006年   2338篇
  2005年   1986篇
  2004年   1826篇
  2003年   1725篇
  2002年   1533篇
  2001年   1308篇
  2000年   1161篇
  1999年   1111篇
  1998年   1854篇
  1997年   1212篇
  1996年   977篇
  1995年   682篇
  1994年   573篇
  1993年   481篇
  1992年   345篇
  1991年   332篇
  1990年   318篇
  1989年   293篇
  1988年   238篇
  1987年   209篇
  1986年   167篇
  1985年   146篇
  1984年   114篇
  1983年   92篇
  1982年   47篇
  1981年   59篇
  1980年   49篇
  1979年   42篇
  1978年   44篇
  1977年   58篇
  1976年   88篇
  1975年   30篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
961.
The triggering effect of silver nanoparticles (NPs) on the induction of allergic reactions is evaluated, by studying the activation of mast cells and the clinical features of atopic dermatitis in a mouse model. Granule release is induced in RBL‐2H3 mast cells by 5 nm, but not 100 nm silver NPs. Increases in the levels of reactive oxygen species (hydrogen peroxide and mitochondrial superoxide) and intracellular Ca++ in mast cells are induced by 5 nm silver NPs. In a mouse model of atopic dermatitis induced by a mite allergen, the skin lesions are more severe and appear earlier in mice treated simultaneously with 5 nm silver NPs and allergen compared with mice treated with allergen alone or 100 nm silver NPs and allergen. The histological findings reveal that number of tryptase‐positive mast cells and total IgE levels in the serum increase in mice treated with 5 nm silver NPs and allergen. The results in this study indicate that cotreatment with 5 nm silver NPs stimulates mast cell degranulation and induces earlier and more severe clinical alterations in allergy‐prone individuals.  相似文献   
962.
963.
Uniquely structured CoSe2–carbon nanotube (CNT) composite microspheres with optimized morphology for the hydrogen‐evolution reaction (HER) are prepared by spray pyrolysis and subsequent selenization. The ultrafine CoSe2 nanocrystals uniformly decorate the entire macroporous CNT backbone in CoSe2–CNT composite microspheres. The macroporous CNT backbone strongly improves the electrocatalytic activity of CoSe2 by improving the electrical conductivity and minimizing the growth of CoSe2 nanocrystals during the synthesis process. In addition, the macroporous structure resulting from the CNT backbone improves the electrocatalytic activity of the CoSe2–CNT microspheres by increasing the removal rate of generated H2 and minimizing the polarization of the electrode during HER. The CoSe2–CNT composite microspheres demonstrate excellent catalytic activity for HER in an acidic medium (10 mA cm?2 at an overpotential of ≈174 mV). The bare CoSe2 powders exhibit moderate HER activity, with an overpotential of 226 mV at 10 mA cm?2. The Tafel slopes for the CoSe2–CNT composite and bare CoSe2 powders are 37.8 and 58.9 mV dec?1, respectively. The CoSe2–CNT composite microspheres have a slightly larger Tafel slope than that of commercial carbon‐supported platinum nanoparticles, which is 30.2 mV dec–1.  相似文献   
964.
High‐quality and large‐area molybdenum disulfide (MoS2) thin film is highly desirable for applications in large‐area electronics. However, there remains a challenge in attaining MoS2 film of reasonable crystallinity due to the absence of appropriate choice and control of precursors, as well as choice of suitable growth substrates. Herein, a novel and facile route is reported for synthesizing few‐layered MoS2 film with new precursors via chemical vapor deposition. Prior to growth, an aqueous solution of sodium molybdate as the molybdenum precursor is spun onto the growth substrate and dimethyl disulfide as the liquid sulfur precursor is supplied with a bubbling system during growth. To supplement the limiting effect of Mo (sodium molybdate), a supplementary Mo is supplied by dissolving molybdenum hexacarbonyl (Mo(CO)6) in the liquid sulfur precursor delivered by the bubbler. By precisely controlling the amounts of precursors and hydrogen flow, full coverage of MoS2 film is readily achievable in 20 min. Large‐area MoS2 field effect transistors (FETs) fabricated with a conventional photolithography have a carrier mobility as high as 18.9 cm2 V?1 s?1, which is the highest reported for bottom‐gated MoS2‐FETs fabricated via photolithography with an on/off ratio of ≈105 at room temperature.  相似文献   
965.
Recently, polymer‐coated magnetite (Fe3O4) nanoparticles (NPs) are extensively studied for applications in therapeutics or diagnostics using photothermal effect. Therefore, it is essential to understand the interactions between Fe3O4 NPs and polymers when optical stimuli are applied. Herein, the photonic reactions of Fe3O4 NPs and polymer composites upon application of a 780 nm multiphoton laser are analyzed. The photonic reactions produce unique results including fluorescence from conformationally changed polymer and low‐temperature phase transformation of Fe3O4 NPs. Typically, π‐conjugated chains are formed, inducing fluorescence through a series of main and side‐chain cleavage reactions of polymers with the aliphatic chain. In addition, fluorescence is detected in the cellular system by photonic reactions between Fe3O4 NPs and biomolecules. After multiphoton laser irradiation, light emission is detected near the intracellular Fe3O4 NPs, and a stronger intensity is observed in large‐sized NPs.  相似文献   
966.
All‐solution processed, high‐performance wearable strain sensors are demonstrated using heterostructure nanocrystal (NC) solids. By incorporating insulating artificial atoms of CdSe quantum dot NCs into metallic artificial atoms of Au NC thin film matrix, metal–insulator heterostructures are designed. This hybrid structure results in a shift close to the percolation threshold, modifying the charge transport mechanism and enhancing sensitivity in accordance with the site percolation theory. The number of electrical pathways is also manipulated by creating nanocracks to further increase its sensitivity, inspired from the bond percolation theory. The combination of the two strategies achieves gauge factor up to 5045, the highest sensitivity recorded among NC‐based strain gauges. These strain sensors show high reliability, durability, frequency stability, and negligible hysteresis. The fundamental charge transport behavior of these NC solids is investigated and the combined site and bond percolation theory is developed to illuminate the origin of their enhanced sensitivity. Finally, all NC‐based and solution‐processed strain gauge sensor arrays are fabricated, which effectively measure the motion of each finger joint, the pulse of heart rate, and the movement of vocal cords of human. This work provides a pathway for designing low‐cost and high‐performance electronic skin or wearable devices.  相似文献   
967.
968.
The self‐assembly of amyloidogenic peptides into β‐sheet‐rich aggregates is a general feature of many neurodegenerative diseases, including Alzheimer's disease, which signifies the need for the effective attenuation of amyloid aggregation toward alleviating amyloid‐associated neurotoxicity. This study reports that photoluminescent carbon nanodots (CDs) can effectively suppress Alzheimer's β‐amyloid (Aβ) self‐assembly and function as a β‐sheet breaker disintegrating preformed Aβ aggregates. This study synthesizes CDs using ammonium citrate through one‐pot hydrothermal treatment and passivates their surface with branched polyethylenimine (bPEI). The bPEI‐coated CDs (bPEI@CDs) exhibit hydrophilic and cationic surface characteristics, which interact with the negatively charged residues of Aβ peptides, suppressing the aggregation of Aβ peptides. Under light illumination, bPEI@CDs display a more pronounced effect on Aβ aggregation and on the dissociation of β‐sheet‐rich assemblies through the generation of reactive oxygen species from photoactivated bPEI@CDs. The light‐triggered attenuation effect of Aβ aggregation using a series of experiments, including photochemical and microscopic analysis, is verified. Furthermore, the cell viability test confirms the ability of photoactivated bPEI@CDs for the suppression of Aβ‐mediated cytotoxicity, indicating bPEI@CDs' potency as an effective anti‐Aβ neurotoxin agent.  相似文献   
969.
970.
Biomolecular regulatory networks are organised around hubs, which can interact with a large number of targets. These targets compete with each other for access to their common hubs, but whether the effect of this competition would be significant in magnitude and in function is not clear. In this review, the authors discuss recent in vivo studies that analysed the system level retroactive effects induced by target competition in microRNA and mitogen‐activated protein kinase regulatory networks. The results of these studies suggest that downstream targets can regulate the overall state of their upstream regulators, and thus cannot be ignored in analysing biomolecular networks.Inspec keywords: reviews, RNA, molecular biophysics, enzymesOther keywords: target‐mediated reverse signalling, mitogen‐activated protein kinase regulatory networks, biomolecular regulatory networks, microRNA regulatory networks, review, in vivo study  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号