首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49122篇
  免费   2755篇
  国内免费   154篇
电工技术   708篇
综合类   65篇
化学工业   10372篇
金属工艺   2135篇
机械仪表   3241篇
建筑科学   1097篇
矿业工程   25篇
能源动力   2111篇
轻工业   3886篇
水利工程   271篇
石油天然气   88篇
武器工业   2篇
无线电   7810篇
一般工业技术   10660篇
冶金工业   3880篇
原子能技术   658篇
自动化技术   5022篇
  2024年   24篇
  2023年   537篇
  2022年   680篇
  2021年   1480篇
  2020年   1069篇
  2019年   1175篇
  2018年   1429篇
  2017年   1411篇
  2016年   1750篇
  2015年   1293篇
  2014年   2088篇
  2013年   3006篇
  2012年   3265篇
  2011年   3889篇
  2010年   2814篇
  2009年   2921篇
  2008年   2811篇
  2007年   2185篇
  2006年   2031篇
  2005年   1723篇
  2004年   1571篇
  2003年   1513篇
  2002年   1329篇
  2001年   1134篇
  2000年   996篇
  1999年   928篇
  1998年   1557篇
  1997年   991篇
  1996年   803篇
  1995年   557篇
  1994年   460篇
  1993年   406篇
  1992年   290篇
  1991年   274篇
  1990年   258篇
  1989年   241篇
  1988年   205篇
  1987年   168篇
  1986年   119篇
  1985年   115篇
  1984年   92篇
  1983年   63篇
  1982年   38篇
  1981年   39篇
  1980年   30篇
  1979年   31篇
  1978年   30篇
  1977年   38篇
  1976年   61篇
  1973年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
881.
Galvanic coupling effect on the corrosion of SiC-reinforced aluminum alloy-matrix composites was investigated in a sodium chloride solution. The potentiodynamic polarization measurement indicated that pitting potentials of metal matrix composites (MMCs) and AA2124 matrix alloy were similar, and pitting potential of MMCs was almost same as corrosion potential, while pitting susceptibility of MMCs was higher than that of AA2124 alloy. Galvanic current by formation of galvanic couple between SiCw and matrix reveals very low value because of large cathodic polarization of SiC. However, by increasing potential of matrix to pitting potential by this galvanic couple and thus, forming pits easily at the weak passive film near SiC reinforcing phase preferentially, it is concluded that pitting susceptibility of MMCs increases highly than AA2124 alloy of matrix composition.  相似文献   
882.
The rapid sintering of nano-structured WC hard materials in a short time is introduced with a focus on the manufacturing potential of this spark plasma sintering process. The advantage of this process allows very quick densification to near theoretical density and prohibition of grain growth in nano-structured materials. A dense pure WC hard material with a relative density of up to 97.6% was produced with simultaneous application of 60 MPa pressure and electric current of 2800 A within 2 min. A larger current caused a higher rate of temperature increase and therefore a higher densification rate of the WC powder. The finer the initial WC powder size the higher is the density and the better are the mechanical properties. The fracture toughness and hardness values obtained were 6.6 MPa m1/2 and 2480 kg/mm2, respectively under 60 MPa pressure and 2800 A using 0.4 μm WC powder.  相似文献   
883.
ZnO films for electronic applications were deposited by radio-frequency (rf) sputtering onto various metal bottom electrodes (Pt/Ti, W, Ni) to investigate such structural properties as crystallinity and surface morphology. The crystallinity, surface morphology and composition of the as-deposited films were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Rutherford back-scattering spectrometry (RBS), respectively. The preferred orientation and surface morphologies were strongly influenced by the type of bottom electrodes. The ZnO films with (200) texturing deposited on Pt/Ti/SiO2/Si showed a smoother and smaller grain size than those deposited on W and Ni. The ZnO films on Pt and W electrodes exhibited compressive residual stress. This article is based on a presentation made in the 2002 Korea-US symposium on the “Phase Transformations of Nano-Materials”, organized as a special program of the 2002 Annual Meeting of the Korean Institute of Metals and Materials, held at Yonsei University, Seoul, Korea on October 25–26, 2002.  相似文献   
884.
A study has been made to investigate the superplastic deformation mechanisms of 7475 Al alloy in relation to the variation of grain size ranging between 5.5 μm and 13 μm. The strain-rate sensitivity (m) was increased with decreasing grain size in the superplastic deformation regime. Microstructural investigation after tension tests revealed that the dispersoid free zones were produced mostly at the grain boundaries normal to the tensile direction. A new model for describing the deformation behavior of the 7475 Al alloy has been proposed based on the assumption that the grain boundary sliding was accommodated by both diffusional flow and slip. This new model well predicts many aspects of experimental results.  相似文献   
885.
Polymers such as polypropylene or polyethylene offer a unique feature of producing an integral or living hinge for automobiles, which can flex over a million times without causing a failure. However, due to increased fluidity resistance at hinges during molding, several defects such as short shot or premature failure can occur with the improper selection of gate locations. In this paper, a design guideline was induced by investigating resin flow patterns depending on several gate positions obtained by numerical analyses of a simple strip with a hinge. The analyses of the simple strip part showed that the resin at the hinge did not flow until the other side of the strip was filled. Once the resin at the hinge did not flow for a long time enough to be solidified, defects such as short shots or hesitation marks formed. For a practical application of the design guideline determined, four gate systems for an automobile junction box were designed. It was found that the properly determined gate location leads to better resin flow and shorter hesitation time. Finally, injection molding tryouts using a mold that was designed by one of the proposed gate systems were conducted. The experiments showed that hinges without defects could be produced by using the designed gate location to assure the induced design guideline to be reasonable.  相似文献   
886.
The effect of the dielectric constant (k) of bonding materials in a screen-printed carbon nanotube (CNT) cathode on the field enhancement factor was investigated for high-efficiency CNT cathodes using the ANSYS software. The values obtained by a simulation study were compared to the experimental results obtained for screen-printed CNT cathodes. The field enhancement factor increased as the dielectric constant decreased, reaching a maximum value at a dielectric constant of 1, the value for a vacuum. The findings indicate that the larger sheet resistance of the bonding materials, after the firing process, can be attributed to the larger emission current of the CNT cathode. From these results, it was concluded that the best bonding materials for screen-printed CNT cathodes should have a low dielectric constant and a high sheet resistance. This finding can be used as criteria for selecting bonding materials for use in CNT pastes for highly efficient CNT cathodes.  相似文献   
887.
Diamond thin films have been deposited using hot filament chemical vapour deposition technique on manually scratched p-Si(1 0 0) substrate, with and without magnesium interlayer. In spite of magnesium melting point being lower (Tm = 649 °C) than the growth temperature of the substrate (Ts  750 °C) used in these experiments, it was found that high quality diamond films could be grown on Mg covered substrate. A liquid substrate is probably generated during the diamond film growth. Raman spectroscopy analysis exhibited only the triply degenerate, zone centre optical phonon peak at 1333 cm−1 indicating that nearly stress free crystallites were present. Broadening of the Raman peak (11.76 cm−1) indicates that some small crystallites also are present. Scanning electron and atomic force microscopy accompanied by X-ray diffraction analysis where used to compare the details of diamond film growth directly on scratched Si(1 0 0) and Mg interlayered scratched Si(1 0 0) substrates.  相似文献   
888.
High-temperature wear characteristics between plasma spray coated piston rings and cylinder liners were investigated to find the optimum combination of coating materials using the disc-on-plate reciprocating wear test in dry conditions. The disc and plate represented the piston ring and the cylinder liner, respectively. Coating materials studied were Cr2O3-NiCr, Cr2O3-NiCr-Mo, and Cr3C2-NiCr-Mo. Plasma spray conditions for the coating materials were established adjusting stand-off distance to obtain a coating with a porosity content of ∼5%. It was found that a dissimilar coating combination of Cr2O3-NiCr-Mo and Cr3C2-NiCr-Mo provided the best antiwear performance. The addition of molybdenum was found to be beneficial to improve the wear resistance of the coating. Hardness differences between mating surfaces were also important factors in determining the wear characteristics, so that it should be controlled below 300 in Vickers hardness under dry conditions. Adhesive wear accompanying with metal transfer was a dominant wear mechanism for dry conditions.  相似文献   
889.
STS310S and SC-STS310S (simultaneously co-deposited chromium and aluminum onto 310S austenitic stainless steel substrate by pack-cementation process) were used as separator materials on the cathode side of a molten carbonate fuel cell. With the STS310S, corrosion proceeded via three steps; a formation step of unstable corrosion product, a protection step against corrosion until breakaway, and an advance step of corrosion after breakaway. The final corrosion product was LiFeO2 and the loss of mass was 6.5 mg/cm2 after a corrosion test of 480 hr at 650°C. The SC-STS310S showed more effective corrosion resistance, however, than did common STS310S. There was especially no corrosion loss on the SC-STS310S after the 480 hr corrosion test. It is anticipated that it will be very useful as an alternative separator on the cathode side off the MCFC in the future.  相似文献   
890.
Research was conducted on tailored blank welding between mild steel sheet and Zn-coated steel sheet using CO2 laser beam. The materials used in this study were low carbon steel sheets with a thickness of 1.2 mm and Zn-coated steel sheet with the same thickness and 6.3 μm Zn coating. Experiments were conducted by applying the Taguchi method to obtain optimum conditions for the application of this tailored blank laser welding method in practical manufacturing processes. Optical microscopy, XRD, SEM and TEM analysis were performed to observe the microstructures and to determine the structures of welded zone. In addition, mechanical properties were measured by the microhardness test, tensile test and Erichsen test to evaluate the formability of the welded specimen. There was no trapped Zn in the fusion zone, and the phases of this region consisted of polygonal ferrite, quasi-polygonal ferrite, banitic ferrite and martensite. The elongation value of welded specimen was more than 80% of the value in substrate metal, and the LDH value was more than 90% of the value in substrate metal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号