首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   0篇
电工技术   1篇
化学工业   12篇
金属工艺   4篇
机械仪表   1篇
能源动力   10篇
轻工业   7篇
无线电   20篇
一般工业技术   21篇
冶金工业   13篇
自动化技术   5篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   8篇
  2011年   4篇
  2010年   4篇
  2009年   2篇
  2008年   5篇
  2007年   7篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   7篇
  1996年   5篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有94条查询结果,搜索用时 0 毫秒
51.
Local processing, which is a dominant type of processing in image and video applications, requires a huge computational power to be performed in real-time. However, processing locality, in space and/or in time, allows to exploit data parallelism and data reusing. Although it is possible to exploit these properties to achieve high performance image and video processing in multi-core processors, it is necessary to develop suitable models and parallel algorithms, in particular for non-shared memory architectures. This paper proposes an efficient and simple model for local image and video processing on non-shared memory multi-core architectures. This model adopts a single program multiple data approach, where data is distributed, processed and reused in an optimal way, regarding the data size, the number of cores and the local memory capacity. The model was experimentally evaluated by developing video local processing algorithms and programming the Cell Broadband Engine multi-core processor, namely for advanced video motion estimation and in-loop deblocking filtering. Furthermore, based on these experiences it is also addressed the main challenges of vectorization, and the reduction of branch mispredictions and computational load imbalances. The limits and advantages of the regular and adaptive algorithms are also discussed. Experimental results show the adequacy of the proposed model to perform local video processing, and that real-time is achieved even to process the most demanding parts of advanced video coding. Full-pixel motion estimation is performed over high resolution video (720×576 pixels) at a rate of 30 frames per second, by considering large search areas and five reference frames.  相似文献   
52.
In the case of macromolecules and poorly permeable drugs, oral drug delivery features low bioavailability and low absorption across the intestinal wall. Intestinal absorption can be improved if the drug formulation could be transported close to the epithelium. To achieve this, a cascade delivery device comprising Magnesium-based Janus micromotors (MMs) nesting inside a microscale containers (MCs) has been conceptualized. The device aims at facilitating targeted drug delivery mediated by MMs that can lodge inside the intestinal mucosa. Loading MMs into MCs can potentially enhance drug absorption through increased proximity and unidirectional release. The MMs will be provided with optimal conditions for ejection into any residual mucus layer that the MCs have not penetrated. MMS confined inside MCs propel faster in the mucus environment as compared to non-confined MMs. Upon contact with a suitable fuel, the MM-loaded MC itself can also move. An in vitro study shows fast release profiles and linear motion properties in porcine intestinal mucus compared to more complex motion in aqueous media. The concept of dual-acting cascade devices holds great potential in applications where proximity to epithelium and deep mucus penetration are needed.  相似文献   
53.
The power-flow equation is approximated by the Fokker-Planck equation that is further transformed into a stochastic differential (Langevin) equation, resulting in an efficient method for the estimation of the state of mode coupling along step-index optical fibers caused by their intrinsic perturbation effects. The inherently stochastic nature of these effects is thus fully recognized mathematically. The numerical integration is based on the computer-simulated Langevin force. The solution matches the solution of the power-flow equation reported previously. Conceptually important steps of this work include (i) the expression of the power-flow equation in a form of the diffusion equation that is known to represent the solution of the stochastic differential equation describing processes with random perturbations and (ii) the recognition that mode coupling in multimode optical fibers is caused by random perturbations.  相似文献   
54.
The present study examines the physical and electrochemical properties of platinum particles generated by a combustion method for use in oxygen reduction on the cathode side of a proton exchange fuel cell (PEMFC). This method employs a one-step, open-atmosphere, and dry deposition technique called reactive spray deposition technology (RSDT). The objective of this study is to characterize the intrinsic activity of the platinum produced for incorporation into low-loading cathode electrodes in high performing membrane electrode assemblies (MEA). The process allows for independent real-time control of the carbon, platinum, and ionomer ratios in the final electrode. In this research work we examine the oxygen reduction reaction via a rotating disk three electrode set-up to understand the intrinsic activity of the as-sprayed platinum as well as platinum condensed onto a carbon support. The mass and specific activities were measured in a 0.1 M perchloric acid electrolyte under different deposition conditions and loading was verified by atomic emission spectroscopy inductively coupled plasma (AES-ICP). Microscopy results indicate that the platinum particle sizes are 5 nm (σ = 2.8 nm) in diameter while TEM and XRD show that the platinum generated by the process is pure and crystalline without bulk oxides or precursor material present. The initial rotating disk electrode result shows that the RSDT technique is capable of producing catalysts with an oxygen reduction mass activity at 0.9 V of 200 mA/mgPt rotating at 1600 rpm and 30 °C. The electrochemically active surface area approaches 120 m2/g for the platinum, carbon, and ionomer samples and the unsupported sample with only platinum has an active area of 92 m2/g. The rather larger surface area of the unsupported sample exists when the platinum is deposited as a highly porous nanostructured layer that allows for high penetration of reactant.  相似文献   
55.
    
ABSTRACT

By solving the power flow equation, we investigate the influence of mode coupling on space division multiplexing capability of three multimode step-index silica optical fibres with a different strengths of mode coupling. Results show that mode coupling significantly limits the length of these fibres at which the space division multiplexing can be realized with a minimal crosstalk between the neighbour optical channels. This is most pronounced in silica optical fibres with the strongest mode coupling. The two and three spatially multiplexed channels in the investigated step-index silica optical fibres can be employed with a minimal crosstalk up to the fibre lengths of few hundred of meters and few tens of meters, respectively. These lengths are much shorter than kilometer lengths at which these fibres are usually employed without space division multiplexing. Such characterization of optical fibres should be considered in designing an optical fibre transmission system for space division multiplexing.  相似文献   
56.
Solid oxide fuel cells (SOFC) using a pulsed laser deposited bi-layer electrolyte have been successfully fabricated and have shown very good performance at low operating temperatures. The cell reaches power densities of 0.5 W cm−2 at 550 °C and 0.9 W cm−2 at 600 °C, with open circuit voltage (OCV) values larger than 1.04 V. The bi-layer electrolyte contains a 6–7 μm thick samarium-doped ceria (SDC) layer deposited over a ∼1 μm thick scandium-stabilized zirconia (ScSZ) layer. The electrical leaking between the anode and cathode through the SDC electrolyte, which due to the reduction of Ce4+ to Ce3+ in reducing environment when using a single layer SDC electrolyte, has been eliminated by adopting the bi-layer electrolyte concept. Both ScSZ and SDC layers in the bi-layer electrolyte prepared by the pulsed laser deposition (PLD) technique are the highly conductive cubic phases. Poor conductive (Zr, Ce)O2-based solid solutions or β-phase ScSZ were not found in the bi-layer electrolyte prepared by the PLD due to low processing temperatures of the technique. Excellent reliability and flexibility of the PLD technique makes it a very promising technique for the fabrication of thin electrolyte layer for SOFCs operating at reduced temperatures.  相似文献   
57.
It is generally believed that CTLs mature in lymphoid organs and then migrate into target tissues to execute their effector functions. This notion, however, is based on studies using antigens that are readily localized in the lymphoid tissue, such as viruses and allogeneic transplants. The site for maturation of CTLs for nonmetastatic tumors has not been determined. Because nonmetastatic tumor cells are not localized in lymphoid tissues, it is questionable whether such tumors are efficient inducers of antitumor CTLs. Here, we report that a nonmetastatic B7+ plasmacytoma induces strong effector CTL response. Thus, it is possible to induce CTLs with strong ex vivo CTL activity in the absence of tumor metastasis. In addition, a detailed kinetic analysis of CD8 T cell recruitment and maturation of CTL activity suggests that antitumor CTLs mature within the tumor rather than in the lymphoid tissues. Interestingly, despite B7-1 expression on tumor cells, induction of effector CTLs also requires costimulation by B7 on host antigen-presenting cells. These findings have important implications for tumor gene therapy and for understanding the mechanism of CTL induction in vivo.  相似文献   
58.
Electrophysiological investigations were carried out both in patients with carpal tunnel syndrome (CTS) and in healthy individuals. The evoked potentials were examined during stimulation of sensitive branches of n. medianus and of other nerves. The most sensitive and important for diagnosis appeared to be the electrophysiological test of alteration of responsive reaction to the stimulation of the sensitive branch of n. medianus for 4 finger and the considerable difference of evoked reactions on stimulation of skin palm branch and branch of the 1-st finger of n. medianus. The diagnostic importance of these indices corresponds well to anatomical and pathophysiological characteristics of CTS.  相似文献   
59.
Resting membrane potential (RMP), K+ channel contribution to RMP and the development of excitability were investigated in the entire population of acutely dissociated embryonic (E) rat cortical cells over E11-22 using a voltage-sensitive fluorescent indicator dye and flow cytometry. During the period of intense proliferation (E11-13), two cell subpopulations with distinct estimated RMPs were recorded: one polarized at approximately -70 mV and the other relatively less-polarized at approximately -40 mV. Ca2+o was critical in sustaining the RMP of the majority of less-polarized cells, while the well-polarized cells were characterized by membrane potentials exhibiting a approximately Nernstian relationship between RMP and [K+]o. Analysis of these two subpopulations revealed that > 80% of less-polarized cells were proliferative, while > 90% of well-polarized cells were postmitotic. Throughout embryonic development, the disappearance of Ca2+o-sensitive, less-polarized cells correlated with the disappearance of the proliferating population, while the appearance of the K+o-sensitive, well-polarized population correlated with the appearance of terminally postmitotic neurons, immuno-identified as BrdU-, tetanus toxin+ cells. Differentiating neurons were estimated to contain increased K+i relative to less-polarized cells, coinciding with the developmental expression of Cs+/Ba2+-sensitive and Ca2+-dependent K+ channels. Both K+ channels contributed to the RMP of well-polarized cells, which became more negative toward the end of neurogenesis. Depolarizing effects of veratridine, first observed at E11, progressively changed from Ca2+o-dependent and tetrodotoxin-insensitive to Na+o-dependent and tetrodotoxin-sensitive response by E18. The results reveal a dynamic development of RMP, contributing K+ channels and voltage-dependent Na+ channels in the developing cortex as it transforms from proliferative to primarily differentiating tissue.  相似文献   
60.
A metal-supported SOFC with a samarium doped ceria (SDC)/scandia-stabilized zirconia (ScSZ) bilayer electrolyte was fabricated by a combination of pulsed laser deposition (PLD) and wet ceramic processes. The cell performance and aging characteristics during operation were analyzed by both AC impedance spectroscopy and current-voltage measurements in the temperature range from 400 °C to 600 °C. The power generation characteristics of this metal-supported SOFC at low temperatures should allow for rapid start-up and help to reduce the performance deterioration seen in high temperature SOFCs due material oxidation and instability. In this paper, our early research results are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号