首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1839篇
  免费   90篇
  国内免费   8篇
电工技术   25篇
综合类   3篇
化学工业   393篇
金属工艺   35篇
机械仪表   59篇
建筑科学   42篇
能源动力   144篇
轻工业   186篇
水利工程   12篇
石油天然气   9篇
无线电   229篇
一般工业技术   359篇
冶金工业   83篇
原子能技术   5篇
自动化技术   353篇
  2024年   7篇
  2023年   41篇
  2022年   101篇
  2021年   159篇
  2020年   106篇
  2019年   93篇
  2018年   137篇
  2017年   94篇
  2016年   94篇
  2015年   62篇
  2014年   84篇
  2013年   155篇
  2012年   94篇
  2011年   109篇
  2010年   81篇
  2009年   62篇
  2008年   58篇
  2007年   51篇
  2006年   48篇
  2005年   34篇
  2004年   15篇
  2003年   22篇
  2002年   11篇
  2001年   14篇
  2000年   11篇
  1999年   8篇
  1998年   30篇
  1997年   18篇
  1996年   13篇
  1995年   15篇
  1994年   11篇
  1993年   6篇
  1992年   6篇
  1991年   6篇
  1990年   5篇
  1989年   7篇
  1988年   3篇
  1987年   7篇
  1986年   3篇
  1985年   7篇
  1984年   7篇
  1983年   6篇
  1982年   4篇
  1981年   10篇
  1980年   4篇
  1979年   5篇
  1978年   4篇
  1975年   2篇
  1974年   3篇
  1969年   1篇
排序方式: 共有1937条查询结果,搜索用时 15 毫秒
11.
Journal of Signal Processing Systems - Segmentation of thigh tissues (muscle, fat, inter-muscular adipose tissue (IMAT), bone, and bone marrow) from magnetic resonance imaging (MRI) scans is useful...  相似文献   
12.
13.
Wireless Personal Communications - Mobile edge computation (MEC) is a potential technology to reduce the energy consumption and task execution delay for tackling computation-intensive tasks on...  相似文献   
14.
In heterogeneous access network, Multiple-Input Multiple-Output (MIMO) radio-over-fiber (RoF) system is an efficient approach for multiple signal transmission with low cost and complexity. The performance of RoF fronthaul system in MIMO system will be varied with different nonlinear effects. By adjusting various transmission parameters, such as the input signal power or the laser bias current, the nonlinear impacts produced by the RoF system can be reduced. In this paper, a novel algorithm Improved Aquila Optimization (IAO) is proposed to optimize transmission circumstances of MIMO RoF system. It determines the appropriate bias current for both lasers and Radio Frequency (RF) signal power in a short period. The input signals are wavelength multiplexed with Intensity Modulation and Direct Detection (IM/DD) applied. The carrier as well as transmission frequency is governed by the MIMO-Long-Term Evolution (LTE) standard. The proposed system is implemented in MATLAB, and the performance is evaluated. The experimental results show that fast convergence and trade-off between noise and nonlinearity are obtained with varying bandwidth. In the experimental scenario, the maximum Error Vector Magnitude (EVM) of 1.88, 3.14, and signal-to-noise ratio (SNR) of 3.204, and 2.698 was attained for both quadrature phase shift keying (QPSK) and quadrature amplitude modulation (QAM) modulation. [Correction added on 24 April 2023, after first online publication: the SNR values were corrected in the preceding sentence.] For 100 iterations, the processing time was reduced to 0.137 s. When compared with the conventional state-of-the-art approaches, the accuracy and computational complexity of the proposed approach are improved.  相似文献   
15.
Miniaturization and energy consumption by computational systems remain major challenges to address. Optoelectronics based synaptic and light sensing provide an exciting platform for neuromorphic processing and vision applications offering several advantages. It is highly desirable to achieve single-element image sensors that allow reception of information and execution of in-memory computing processes while maintaining memory for much longer durations without the need for frequent electrical or optical rehearsals. In this work, ultra-thin (<3 nm) doped indium oxide (In2O3) layers are engineered to demonstrate a monolithic two-terminal ultraviolet (UV) sensing and processing system with long optical state retention operating at 50 mV. This endows features of several conductance states within the persistent photocurrent window that are harnessed to show learning capabilities and significantly reduce the number of rehearsals. The atomically thin sheets are implemented as a focal plane array (FPA) for UV spectrum based proof-of-concept vision system capable of pattern recognition and memorization required for imaging and detection applications. This integrated light sensing and memory system is deployed to illustrate capabilities for real-time, in-sensor memorization, and recognition tasks. This study provides an important template to engineer miniaturized and low operating voltage neuromorphic platforms across the light spectrum based on application demand.  相似文献   
16.
Wireless Personal Communications - The number of aged and disabled people has been increasing worldwide. To look after these people is a big challenge in this era. However, scientists overcome the...  相似文献   
17.
Fouling of evaporative cooler and condenser tubes is one of the most important factors affecting their thermal performance, which reduces effectiveness and heat transfer capability with time. In this paper, the experimental data on fouling reported in the literature are used to develop a fouling model for this class of heat exchangers. The model predicts the decrease in heat transfer rate with the growth of fouling. A detailed model of evaporative coolers and condensers, in conjunction with the fouling model, is used to study the effect of fouling on the thermal performance of these heat exchangers at different air inlet wet bulb temperatures. The results demonstrate that fouling of tubes reduces gains in performance resulting from decreasing values of air inlet wet bulb temperature. It is found that the maximum decrease in effectiveness due to fouling is about 55 and 78% for the evaporative coolers and condensers, respectively, investigated in this study. For the evaporative cooler, the value of process fluid outlet temperature Tp,out varies by 0.66% only at the clean condition for the ambient wet bulb temperatures considered. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
18.
In this paper, research has been conducted on the floating type nuclear power plant named as ABV reactor which is designed for district heating, power, and sea water desalination by OKBM facility at Russia. This reactor was tested under different thermal loads during the designing phase, and three modules have been investigated. Theoretical calculations and simulation studies have been performed on these three modules having specifications as ABV‐6M with 47MWth, ABV‐6 with 38MWth, and ABV‐3 with 18MWth.The results obtained from these modules have been calculated mathematically and verified by simulation. We have compared the originally derived data of ABV desalination system with our theoretical and simulation analysis. The results from two desalination techniques including RO and RO + MED have been calculated and are presented in this paper with details. The results obtained from both analysis show that the efficiency of ABV nuclear reactor desalination system increases with the decrease in corresponding water cost ratio. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
19.
Controlling the electromechanical response of piezoelectric biological structures including tissues, peptides, and amino acids provides new applications for biocompatible, sustainable materials in electronics and medicine. Here, the piezoelectric effect is revealed in another class of biological materials, with robust longitudinal and shear piezoelectricity measured in single crystals of the transmembrane protein ba3 cytochrome c oxidase from Thermus thermophilus. The experimental findings from piezoresponse force microscopy are substantiated using a range of control measurements and molecular models. The observed longitudinal and shear piezoelectric responses of ≈ 2 and 8 pm V−1, respectively, are comparable to or exceed the performance of commonly used inorganic piezoelectric materials including quartz, aluminum nitride, and zinc oxide. This suggests that transmembrane proteins may provide, in addition to physiological energy transduction, technologically useful piezoelectric material derived entirely from nature. Membrane proteins could extend the range of rationally designed biopiezoelectric materials far beyond the minimalistic peptide motifs currently used in miniaturized energy harvesters, and the finding of robust piezoelectric response in a transmembrane protein also raises fundamental questions regarding the molecular evolution, activation, and role of regulatory proteins in the cellular nanomachinery, indicating that piezoelectricity might be important for fundamental physiological processes.  相似文献   
20.
Chalcogenide phase change materials enable non-volatile, low-latency storage-class memory. They are also being explored for new forms of computing such as neuromorphic and in-memory computing. A key challenge, however, is the temporal drift in the electrical resistance of the amorphous states that encode data. Drift, caused by the spontaneous structural relaxation of the newly recreated melt-quenched amorphous phase, has consistently been observed to have a logarithmic dependence in time. Here, it is shown that this observation is valid only in a certain observable timescale. Using threshold-switching voltage as the measured variable, based on temperature-dependent and short timescale electrical characterization, the onset of drift is experimentally measured. This additional feature of the structural relaxation dynamics serves as a new benchmark to appraise the different classical models to explain drift.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号