首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1574篇
  免费   78篇
  国内免费   5篇
电工技术   27篇
综合类   4篇
化学工业   343篇
金属工艺   35篇
机械仪表   51篇
建筑科学   26篇
能源动力   107篇
轻工业   153篇
水利工程   10篇
石油天然气   9篇
无线电   210篇
一般工业技术   297篇
冶金工业   73篇
原子能技术   3篇
自动化技术   309篇
  2024年   23篇
  2023年   46篇
  2022年   84篇
  2021年   135篇
  2020年   102篇
  2019年   84篇
  2018年   125篇
  2017年   87篇
  2016年   79篇
  2015年   56篇
  2014年   71篇
  2013年   126篇
  2012年   69篇
  2011年   84篇
  2010年   68篇
  2009年   51篇
  2008年   44篇
  2007年   44篇
  2006年   35篇
  2005年   30篇
  2004年   11篇
  2003年   17篇
  2002年   8篇
  2001年   12篇
  2000年   11篇
  1999年   6篇
  1998年   26篇
  1997年   15篇
  1996年   10篇
  1995年   14篇
  1994年   10篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1990年   5篇
  1989年   7篇
  1988年   3篇
  1987年   6篇
  1986年   3篇
  1985年   6篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   7篇
  1980年   2篇
  1979年   5篇
  1978年   2篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
排序方式: 共有1657条查询结果,搜索用时 15 毫秒
71.
The main objective of this work was to reduce barriers that prevent the usage of starch‐based foams by understanding the effect and the sequence of dual‐modification of crosslinked (XL) and acetylated (Ac) starch in one continuous supercritical fluid reactive extrusion (SCFX) process on wetting properties, physicochemical properties, and cellular structure of solid foam. The starch was reacted with epichlorohydrin (EPI) and acetic anhydride (Ac) under alkaline conditions in a twin‐screw extruder in the presence of supercritical carbon dioxide (SC‐CO2). An increase in EPI concentration from 0.00 to 3.00% increased the degree of crosslinking as measured by DSC and confirmed by the quantification of the glucose units in the solution after acid hydrolysis. We observed a reduction of the glucose units from 93.07% for 0.00% EPI to 6.73% when 3.00% EPI was added. With crosslinking/acetylation processing, contact angle was higher for modified starches, indicating that chemical treatments induced dramatic changes in their surface polarity. Compared with native, the contact angle for dual modified starch increased from 43.1° to 91.7° which indicated their lower wettability. The addition of SC‐CO2, EPI, and Ac to the formulation reduced the density of the extrudates and increased the expansion ratio. The average cell size in the extrudate determined by scanning electron microscopy was also found to decrease from 150 to 34 μm by the addition of the two reagents. Moreover, the dual‐modification of starches provided more hardness and adhesiveness to the extrudates than was observed for the unmodified starches. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
72.
In the last few decades, different types of gels have been widely studied as potential drug delivery carriers. In this paper, we propose the synthesis of an oleogel, a tamarind gum hydrogel, and bigels for applications as drug delivery matrices. The oleogel was prepared by mixing stearic acid and rice bran oil, whereas the hydrogel was prepared by mixing tamarind gum with a hydroethanolic solution. Hydrogel‐in‐oleogel and oleogel‐in‐hydrogel bigels were prepared by mixing the hydrogel and the oleogel. The suitability of the formulations for controlled drug release applications was thoroughly examined using microscopy, Fourier transform infrared (FTIR) spectroscopy, as well as mechanical, electrical, thermal, drug release, and antimicrobial studies. An alteration in the microarchitecture of the bigels is observed when the oleogel and the hydrogel are mixed in varying proportions. The associative interactions within the formulations increase with the increase in the hydrogel content. The bigels exhibit the presence of stearic acid melting endotherm (associated with the oleogel) and water evaporation endotherm (associated with the hydrogel). This study suggests that the hydrogel has lowest bulk resistance compared to the other formulations. The structural breakdown of the bigels is composition‐dependent, and the bulk electrical resistance is mainly governed by the oleogel phase. An increase in the diffusion of the moxifloxacin HCl from the formulations is observed with the increase of the hydrogel proportion, which in turn increases the rate of release of the drug. The proposed formulations also exhibit good antimicrobial efficacy. The analysis of these properties suggests that specific formulations can be tailored by need‐based applications of the drug release rate.  相似文献   
73.
Poly(vinyl alcohol) (PVA)‐silica hybrids with exceptionally reduced solubility in water were synthesized. The hybrid xerogels were fabricated through sol‐gel processing of a mixture of PVA and the acid‐catalyzed silica precursor tetraethoxysilane. The effects of varying ratios of PVA and silica precursor on the surface structure, thermal properties, crystallinity, and solubility of the hybrids were investigated. Unlike the highly water‐soluble nature of PVA, all the hybrids displayed considerably reduced solubility in water. This anomalous behavior of PVA in the hybrids can be attributed to the unavailability of its pendant –OH groups. Water‐resistant PVA‐silica hybrids can find applications in various technologies requiring biocompatible systems that are stable in aqueous environments.  相似文献   
74.
Recently, autism-related research has focused on the identification of various genes and disturbed pathways causing the genetically heterogeneous group of autism spectrum disorders (ASD). The list of autism-related genes has significantly increased due to better awareness with advances in genetic technology and expanding searchable genomic databases. We compiled a master list of known and clinically relevant autism spectrum disorder genes identified with supporting evidence from peer-reviewed medical literature sources by searching key words related to autism and genetics and from authoritative autism-related public access websites, such as the Simons Foundation Autism Research Institute autism genomic database dedicated to gene discovery and characterization. Our list consists of 792 genes arranged in alphabetical order in tabular form with gene symbols placed on high-resolution human chromosome ideograms, thereby enabling clinical and laboratory geneticists and genetic counsellors to access convenient visual images of the location and distribution of ASD genes. Meaningful correlations of the observed phenotype in patients with suspected/confirmed ASD gene(s) at the chromosome region or breakpoint band site can be made to inform diagnosis and gene-based personalized care and provide genetic counselling for families.  相似文献   
75.
The study was carried out to investigate the changes in saturated (SFA), monoene (MUFA), trans (TFA), and polyunsaturated (PUFA) fatty acids and the key fatty acid ratios (SFA/UFA, cis PUFA/SFA, C18:2/C16:0 and C18:3/C16:0) during potato chips frying in canola oil using single bounce attenuated total reflectance FTIR (SB‐ATR‐FTIR) spectroscopy. The data obtained from GC‐FID were used as reference. The calibration of main fat groups and their key fatty acid ratios were developed by partial least square (PLS) regression coefficients using 4000 to 650 cm?1 spectral range. FTIR PLS regression for the predicted SFA, MUFA, TFA, and PUFA were found 0.999, 0.998, 0.998, and 0.999, respectively, whereas for SFA/UFA, cis PUFA/SFA, C18:2/C16:0 and C18:3/C16:0 the regression coefficients were 0.991, 0.997, 0.996, and 0.994, respectively. We conclude that FTIR‐PLS could be used for rapid and accurate assessment of changes in the main fat groups and their key fatty acid ratios ratio during the frying process. Practical applications: FTIR‐ATR method is very simple, rapid, and environmentally friendly. No sample preparation is required and one drop of oil is enough for FTIR analysis. The proposed method could be applied for quick determination of key fatty acid ratios in the food processing industry.  相似文献   
76.
ABSTRACT: Noble-metal nanostructure allows us to tune optical and electrical properties, which has high utility for real-world application. We studied surface plasmon induced emission of semiconductor quantum dots (QDs) on engineered metallic nanostructures. Highly passive organic ZnS capped CdSe QDs were spin coated on poly-(methyl methacrylate) (PMMA) covered Ag films which brought QDs near to metallic surface. We obtained the enhanced electromagnetic field and reduced fluorescence lifetimes from CdSe/ZnS quantum dots (QDs) due to the strong coupling of emitters wave function with the Ag plasmon resonance. Observed changes include a six-fold increase in the fluorescence intensity and striking reduction in fluorescence lifetimes of CdSe/ZnS QDs on rough Ag nanoneedle compared to the case of smooth surfaces. The advantages of using those nanocomposites are expected for high efficiency light-emitting diodes, platform fabrication of biological and environmental monitoring, and high contrast imaging.  相似文献   
77.
A simple, cost-effective, and novel chemical sensor for ammonia (NH3) gas detection was developed from polyaniline (PANI)/quail eggshell (QES) composites. QES is a natural waste enriched in calcium carbonate. In this work, pure PANI was synthesized from chemical oxidation method and PANI/QES composites were prepared from physical mixing of QES with the synthesized PANI at different mass ratio. A series of complementary techniques including Fourier transform infrared and ultraviolet-visible spectrometers, scanning electron microscope with energy dispersive detection coupled with mapping, thermogravimetric analysis, and X-ray diffractometer were used to characterize the physicochemical and textural properties of the biocomposites. From the results, PANI/QES composite with a mass ratio of 1 exhibited the lowest NH3 detection limit of 5.24 ppm with a linear correlation coefficient (R2) of close to unity (0.9932) between the signal and NH3 gas concentration. As a whole, the PANI/QES biocomposites synthesized from this work exhibited excellent selectivity toward NH3 gas even in the presence of other gas impurities, such as acetone, ethanol, and hexane. For the sensor reusability, the PANI/QES biocomposites can be reused in the application of NH3 gas detection for at least 4 cycles.  相似文献   
78.
In recent times, electrospun nanofibers have been widely studied from several biotechnological approaches; in this work, poly(acrylic acid) (PAA) solutions mixed with chitosan and alginate were electrospun and characterized to determine the behavior of these fibers when used in combination with bacteria, different samples were incubated with the bacterial strains: Streptomyces spp., Micromonospora spp., and Escherichia coli and a OD600 test was performed. The formation of nanofibers via electrospinning and the physicochemical properties of the obtained fibers were evaluated. Results showed that the presence of chitosan enhanced the thermal stability of PAA, since PAA/alginate fibers lost 5% of their mass at 41°C, whereas PAA/chitosan lost this amount at around 125°C. The fibers demonstrated suitable characteristics to be used as a bacteria bioreactor.  相似文献   
79.
A novel xanthan gum-co-acrylic acid superabsorbent hydrogel composite was formulated by free radical polymerization reaction of acrylic acid on xanthan gum. Effect of variables like dynamic swelling ratio, equilibrium swelling ratio, drug loading and drug release was investigated. Swelling ratio increases with decrease in crosslinker concentration. Drug release studies were conducted in pH 7.4 and 0.1N HCl. In acidic environment, drug release was low whereas it was sustained release in alkaline. XG4 showed significant swelling and drug release up to 24?hr. Physicochemical evaluation also confirmed it was optimized formulation. Hence XG4-co-AA was optimized for once daily dose of Perindopril Erbumine.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号