首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2439篇
  免费   158篇
  国内免费   20篇
电工技术   45篇
综合类   7篇
化学工业   547篇
金属工艺   56篇
机械仪表   82篇
建筑科学   51篇
能源动力   184篇
轻工业   236篇
水利工程   11篇
石油天然气   12篇
武器工业   1篇
无线电   294篇
一般工业技术   545篇
冶金工业   134篇
原子能技术   25篇
自动化技术   387篇
  2024年   4篇
  2023年   54篇
  2022年   127篇
  2021年   190篇
  2020年   144篇
  2019年   131篇
  2018年   185篇
  2017年   131篇
  2016年   136篇
  2015年   92篇
  2014年   123篇
  2013年   208篇
  2012年   116篇
  2011年   145篇
  2010年   92篇
  2009年   93篇
  2008年   75篇
  2007年   76篇
  2006年   55篇
  2005年   53篇
  2004年   22篇
  2003年   25篇
  2002年   12篇
  2001年   19篇
  2000年   16篇
  1999年   12篇
  1998年   44篇
  1997年   26篇
  1996年   17篇
  1995年   20篇
  1994年   22篇
  1993年   12篇
  1992年   6篇
  1991年   10篇
  1990年   10篇
  1989年   13篇
  1988年   6篇
  1987年   10篇
  1986年   5篇
  1985年   9篇
  1984年   9篇
  1983年   7篇
  1982年   4篇
  1981年   9篇
  1980年   6篇
  1979年   10篇
  1978年   10篇
  1977年   4篇
  1976年   3篇
  1974年   2篇
排序方式: 共有2617条查询结果,搜索用时 46 毫秒
61.
A growing trend within nanomedicine has been the fabrication of self‐delivering supramolecular nanomedicines containing a high and fixed drug content ensuring eco‐friendly conditions. This study reports on green synthesis of silica nanoparticles (Si‐NPs) using Azadirachta indica leaves extract as an effective chelating agent. X‐ray diffraction analysis and Fourier transform‐infra‐red spectroscopic examination were studied. Scanning electron microscopy analysis revealed that the average size of particles formed via plant extract as reducing agent without any surfactant is in the range of 100–170 nm while addition of cetyltrimethyl ammonium bromide were more uniform with 200 nm in size. Streptomycin as model drug was successfully loaded to green synthesised Si‐NPs, sustain release of the drug from this conjugate unit were examined. Prolong release pattern of the adsorbed drug ensure that Si‐NPs have great potential in nano‐drug delivery keeping the environment preferably biocompatible, future cytotoxic studies in this connection is helpful in achieving safe mode for nano‐drug delivery.Inspec keywords: silicon compounds, nanofabrication, nanomedicine, drug delivery systems, nanoparticles, X‐ray diffraction, Fourier transform infrared spectra, scanning electron microscopyOther keywords: nanosilica, streptomycin, nanoscale drug delivery, nanomedicine, silica nanoparticles, Azadirachta indica leaves extract, X‐ray diffraction analysis, Fourier transform‐infrared spectroscopy, scanning electron microscopy, cetyltrimethyl ammonium bromide, SiO2   相似文献   
62.
To grapple with multidrug resistant bacterial infections, implementations of antibacterial nanomedicines have gained prime attention of the researchers across the globe. Nowadays, zinc oxide (ZnO) at nano‐scale has emerged as a promising antibacterial therapeutic agent. Keeping this in view, ZnO nanostructures (ZnO‐NS) have been synthesised through reduction by P. aphylla aqueous extract without the utilisation of any acid or base. Structural examinations via scanning electron microscopy (SEM) and X‐ray diffraction have revealed pure phase morphology with highly homogenised average particle size of 18 nm. SEM findings were further supplemented by transmission electron microscopy examinations. The characteristic Zn–O peak has been observed around 363 nm using ultra‐violet–visible spectroscopy. Fourier‐transform infrared spectroscopy examination has also confirmed the formation of ZnO‐NS through detection of Zn–O bond vibration frequencies. To check the superior antibacterial activity of ZnO‐NS, the authors'' team has performed disc diffusion assay and colony forming unit testing against multidrug resistant E. coli, S. marcescens and E. cloacae. Furthermore, protein kinase inhibition assay and cytotoxicity examinations have revealed that green fabricated ZnO‐NS are non‐hazardous, economical, environmental friendly and possess tremendous potential to treat lethal infections caused by multidrug resistant pathogens.Inspec keywords: nanomedicine, zinc compounds, II‐VI semiconductors, wide band gap semiconductors, nanoparticles, scanning electron microscopy, X‐ray diffraction, antibacterial activity, transmission electron microscopy, particle size, Fourier transform infrared spectra, ultraviolet spectra, visible spectra, enzymes, biochemistry, molecular biophysics, microorganisms, drugs, toxicology, bonds (chemical), semiconductor growth, nanofabrication, vibrational modesOther keywords: green synthesised zinc oxide nanostructures, Periploca aphylla extract, antibacterial potential, multidrug resistant pathogens, multidrug resistant bacterial infections, antibacterial nanomedicines, P. aphylla aqueous extract, structural examinations, scanning electron microscopy, X‐ray diffraction, pure phase morphology, homogenised average particle size, SEM, transmission electron microscopy, Fourier‐transform infrared spectroscopy, bond vibration frequency, antibacterial activity, disc diffusion assay, colony forming unit testing, S. marcescens, E. cloacae, E. coli, ultraviolet‐visible spectroscopy, protein kinase inhibition assay, cytotoxicity, lethal infections, ZnO  相似文献   
63.
64.
The precise delivery of biofunctionalized matters is of great interest from the fundamental and applied viewpoints. In spite of significant progress achieved during the last decade, a parallel and automated isolation and manipulation of rare analyte, and their simultaneous on‐chip separation and trapping, still remain challenging. Here, a universal micromagnet junction for self‐navigating gates of microrobotic particles to deliver the biomolecules to specific sites using a remote magnetic field is described. In the proposed concept, the nonmagnetic gap between the lithographically defined donor and acceptor micromagnets creates a crucial energy barrier to restrict particle gating. It is shown that by carefully designing the geometry of the junctions, it becomes possible to deliver multiple protein‐functionalized carriers in high resolution, as well as MCF‐7 and THP‐1 cells from the mixture, with high fidelity and trap them in individual apartments. Integration of such junctions with magnetophoretic circuitry elements could lead to novel platforms without retrieving for the synchronous digital manipulation of particles/biomolecules in microfluidic multiplex arrays for next‐generation biochips.  相似文献   
65.
In this study, an eco‐friendly biosynthesis of stable gold nanoparticles (T‐GNPs) was carried out using different concentrations of tomato juice (nutraceuticals) as a reducing agent and tetrachloroauric acid as a metal precursor to explore their potential application in cancer therapeutics. The synthesis of T‐GNPs was monitored by UV‐visible absorption spectroscopy, which unveiled their formation by exhibiting the typical surface plasmon absorption maxima at 522 nm. The size of T‐GNPs was found to be 10.86 ± 0.6 nm. T‐GNPs were characterised by dynamic light scattering, zeta potential, transmission electron microscopy analysis and Fourier transform infrared spectroscopy. T‐GNPs were further investigated for their anti‐cancer activity against human lung carcinoma cell line (A 549) and human cervical cancer cell line wherein the IC50 values were found to be 0.286 and 0.200 mM, respectively. T‐GNPs inhibited the growth of cancer cells by generating ROS and inducing apoptosis. T‐GNPs were found highly effective by virtue of their size, metallic property and capping molecules. Thus, this study opens up the prospects of using nutraceutical (tomato juice) as nutratherapeutic agent (T‐GNPs) against critical diseases like lung cancer and cervical cancer.Inspec keywords: gold, nanoparticles, particle size, cancer, ultraviolet spectra, visible spectra, electrokinetic effects, transmission electron microscopy, Fourier transform infrared spectra, cellular biophysics, spectrochemical analysis, nanomedicine, nanofabricationOther keywords: tomato‐mediated synthesised gold nanoparticles, tomato juice, reducing agent, tetrachloroauric acid, cancer therapeutics, UV‐visible absorption spectroscopy, surface plasmon absorption, dynamic light scattering, zeta potential, transmission electron microscopy analysis, Fourier transform infrared spectroscopy, human lung carcinoma cell line, anticancer activity, human cervical cancer cell line, nutratherapeutic agent, lung cancer, Au  相似文献   
66.
Infectious diseases are caused by etiological agents. Nanotechnology has been used to minimise the effect of clinical pathogens which have resistance to antibiotics. In current research synthesis, characterisation and biological activities of green synthesised nanoparticles using Artemisia vulgaris extract have been done. The characterisation of AgNPs was carried out using Fourier transform infrared spectroscopy, UV‐Vis spectrophotometry, and scanning electron microscopy. Anti‐biofilm, cell viability, antibacterial, brine shrimp lethality, and deoxyribonucleic acid protection effects have been screened. UV‐Vis spectra showed the absorption peak of synthesised nanoparticles at 400 nm. FT‐IR indicated the involvement of the functional group in the preparation of AgNPs. SEM showed the spherical shape of AgNPs with 30 nm diameter. Biological screening results revealed the antibacterial effect against clinical bacterial pathogens. Biofilm reduction and cell viability assay also supported the antibacterial effect. Cytotoxicity effect was recorded as 100% at 200 μg/ml through brine shrimp lethality assay. Protein kinase inhibition zones recorded for AgNPs (16 mm bald) compared with A. vulgaris extract (11 mm bald). It has been concluded that green synthesised AgNPs are more effective against infectious pathogens and could be used as a potential source for therapeutic drugs.Inspec keywords: cellular biophysics, toxicology, silver, nanoparticles, nanomedicine, diseases, microorganisms, ultraviolet spectra, visible spectra, Fourier transform infrared spectra, enzymes, molecular biophysicsOther keywords: biofilm reduction, cell proliferation, anthelmintic effect, cytotoxicity effect, green synthesised silver nanoparticle, Artemisia vulgaris extract, infectious diseases, aetiological agents, Fourier transform infrared spectroscopy, UV‐Vis spectrophotometry, scanning electron microscopy, SEM, antibiofilm, cell viability, brine shrimp lethality, deoxyribonucleic acid protection effects, AgNP, cytotoxicity, protein kinase inhibition zones, therapeutic drugs  相似文献   
67.
Transition metal dichalcogenides (TMDs) van der Waals (vdW) 1D heterostructures are recently synthesized from 2D nanosheets, which open up new opportunities for potential applications in electronic and optoelectronic devices. The most recent and promising strategies in regards to forming 1D TMDs nanotubes (NTs) or nanoscrolls (NSs) in this review article as well as their heterostructures that are produced from 2D TMDs are summarized. In order to improve the functionality of ultrathin 1D TMDs that are coaxially combined with boron nitride nanotubes and single-walled carbon nanotubes. 1D heterostructured devices perform better than 2D TMD nanosheets when the two devices are compared. The photovoltaic effect in WS2 or MoS2 NTs without a junction may exceed the Shockley–Queisser limit for the above-band-gap photovoltage generation. Photoelectrochemical hydrogen evolution is accelerated when monolayer WS2 or MoS2 NSs are incorporated into a heterojunction. In addition, the photovoltaic performance of the WSe2/MoS2 NSs junction is superior to that of the performance of MoS2 NSs. The summary of the current research about 1D TMDs can be used in a variety of ways, which assists in the development of new types of nanoscale optoelectronic devices. Finally, it also summarizes the current challenges and prospects.  相似文献   
68.
This study proposed a new royal crown-shaped polarisation insensitive double negative triple band microwave range electromagnetic metamaterial absorber (MA). The primary purpose of this study is to utilise the exotic characteristics of this perfect metamaterial absorber (PMA) for microwave wireless communications. The fundamental unit cell of the proposed MA consists of two pentagonal-shaped resonators and two inverse C-shaped metallic components surrounded by a split ring resonator (SRR). The bottom thin copper deposit and upper metallic resonator surface are disjoined by an FR-4 dielectric substrate with 1.6 mm thickness. The CST MW studio, a high-frequency electromagnetic simulator has been deployed for numerical simulation of the unit cell in the frequency range of 4 to 14 GHz. In the TE mode, the offered MA structure demonstrated three different absorption peaks at 6.85 GHz (C-band), 8.87 GHz (X-band), and 12.03 GHz (Ku-band), with 96.82%, 99.24%, and 99.43% absorptivity, respectively. The electric field, magnetic field, and surface current distribution were analysed using Maxwell’s-Curl equations, whereas the angle sensitivity was investigated to comprehend the absorption mechanism of the proposed absorber. The numerical results were verified using the Ansys HFSS (high-frequency structure simulator) and ADS (advanced design system) for equivalent circuit models. Moreover, the proposed MA is polarisation and incident angle independent. Hence, the application of this MA can be extended to a great extent, including airborne radar applications, defence, and stealth-coating technology.  相似文献   
69.
Detection of rapidly evolving malware requires classification techniques that can effectively and efficiently detect zero-day attacks. Such detection is based on a robust model of benign behavior and deviations from that model are used to detect malicious behavior. In this paper we propose a low-complexity host-based technique that uses deviations in static file attributes to detect malicious executables. We first develop simple statistical models of static file attributes derived from the empirical data of thousands of benign executables. Deviations among the attribute models of benign and malware executables are then quantified using information-theoretic (Kullback-Leibler-based) divergence measures. This quantification reveals distinguishing attributes that are considerably divergent between benign and malware executables and therefore can be used for detection. We use the benign models of divergent attributes in cross-correlation and log-likelihood frameworks to classify malicious executables. Our results, using over 4,000 malicious file samples, indicate that the proposed detector provides reasonably high detection accuracy, while having significantly lower complexity than existing detectors.  相似文献   
70.
Continuous flow to send images via encrypted wireless channels may reduce the efficiency of transmission. This is due to the damage or loss of the numerous macro-blocks from these images. Therefore, it is difficult to rebuild these patches from the point of reception. Many algorithms have been proposed in the past decade, particularly error concealment (EC) algorithms. In this paper, we focus on the algorithms that have high efficiency to fill-in the corrupted patches. On the other hand, we also present a new way of detecting the horizontal and vertical gradients especially, in the un-smooth patches. This improves the edge detector filter. Ultimately, a novel scheme for vertical and horizontal interpolation between the corrupted pixels and the non-corrupted adjacent pixels is achieved by improving the efficiency of filling-in. We used a new technique known as the wave-net model. This model combines the wavelet with the neural network classifier (NNC). The neural network was trained in advance to reduce the error extent for the pixels that may occur in the error. The experimental results were convincing and close to the desired. The proposed method is able to enhance image quality in term of both visual perception and the blurriness effects (BE).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号