首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15277篇
  免费   1114篇
  国内免费   50篇
电工技术   224篇
综合类   38篇
化学工业   3350篇
金属工艺   577篇
机械仪表   1131篇
建筑科学   273篇
矿业工程   13篇
能源动力   570篇
轻工业   1274篇
水利工程   89篇
石油天然气   27篇
无线电   2856篇
一般工业技术   3407篇
冶金工业   784篇
原子能技术   205篇
自动化技术   1623篇
  2024年   15篇
  2023年   186篇
  2022年   281篇
  2021年   510篇
  2020年   354篇
  2019年   424篇
  2018年   462篇
  2017年   537篇
  2016年   586篇
  2015年   522篇
  2014年   720篇
  2013年   1014篇
  2012年   1025篇
  2011年   1245篇
  2010年   892篇
  2009年   919篇
  2008年   888篇
  2007年   674篇
  2006年   599篇
  2005年   525篇
  2004年   481篇
  2003年   458篇
  2002年   448篇
  2001年   346篇
  2000年   296篇
  1999年   303篇
  1998年   403篇
  1997年   258篇
  1996年   204篇
  1995年   141篇
  1994年   133篇
  1993年   106篇
  1992年   76篇
  1991年   67篇
  1990年   57篇
  1989年   60篇
  1988年   36篇
  1987年   47篇
  1986年   23篇
  1985年   33篇
  1984年   21篇
  1983年   12篇
  1982年   8篇
  1981年   11篇
  1980年   6篇
  1978年   4篇
  1977年   4篇
  1976年   5篇
  1973年   5篇
  1963年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
221.
In metal oxide nanofiber fabrication using the electrospinning method, heat treatment is performed at temperatures of 500°C or higher for crystallization and polymer desorption. Therefore, it is difficult to fabricate low-temperature phase metal oxides that crystallize at low temperatures. TiO2, a representative metal oxide often used as photocatalysts, is known to have higher photocatalytic activity in the low-temperature phase (anatase structure) than in the high-temperature phase (rutile structure). Studies on the fabrication of TiO2 anatase nanofibers using conventional electrospinning have reported disadvantages such as the partial expression of rutile structures and low crystallinity. This study developed an anatase TiO2 nanofiber as a high-efficiency catalyst based on the electrospinning method and a residual organic matter cleaning method that employs ultra-violet (UV) light. We fabricated nanofibers using the electrospinning method and implemented TiO2 nanofibers with the anatase structure through heat treatment at 260°C. Residual organics remaining after heat treatment of the fabricated crystalized TiO2 nanofibers were removed by exposing them to UV light, thereby improving photocatalytic efficiency. The photocatalytic efficiency of the fabricated TiO2 nanofibers was confirmed through a methylene blue (MB) decomposition experiment under visible light irradiation. The photocatalytic efficiency (time taken for the concentration of the MB solution to reach 50%) of the UV-treated TiO2 nanofibers was approximately six times higher than of P25 and the heat-treated nanofibers.  相似文献   
222.
Two types of multi-walled carbon nanotube (MWNT)-based elastomer nanocomposites are used as a sensor material for the detection of gasoline spills by applying the interdigitated electrode (IDE) device. MWNT-g-polyisoprene (PI) and Si-MWNT/natural rubber (NR) are prepared by applying “grafting-from” and “grafting-to” process, respectively. When compared based on the identical condition of gasoline sensing test, the maximum response value to the exposure of gasoline is 17.5 for MWNT-g-PI sensor and 12.9 for Si-MWNT/NR sensor, which reach the maximum in less than 3 min. The MWNT-g-PI sensor selectively detects gasoline, and its response is completely reversible. It shows that the longer chain length of PI brings about the larger response of MWNT-g-PI sensor to gasoline. The sensitivity of MWNT-g-PI sensor highly depends on both how much gasoline is exposed to the sensor and what bias voltage is applied to the IDE device. The IDE sensor using MWNT-g-PI nanocomposites effectively detects gasoline spills.  相似文献   
223.
The superplastic deformation behavior of quasi-single phase Zn-0.3 wt. %Al was investigated. A series of load relaxation and tensile tests was conducted at various temperatures ranging from RT (20 °C) to 200 °C. The recently proposed internal variable theory of structural superplasticity was applied. The flow curves obtained from load relaxation tests were shown to consist of contributions from interface sliding (IS) and accommodating plastic deformation. In the case of quasi-single phase Zn-0.3 wt.% Al alloy with an average agrain size of 1 μm, the IS behavior could be described as a viscous flow process characterized by a power index of Mg=0.5. A large elongation of about 1400% was obtained at room temperature and the strain rate sensitivity parameter was about 0.4. Although relatively large-grained (10 μm) single phase alloy showed a high value of strain rate sensitivity comparable to that of fine-grained alloy at very low strain rate range, IS was not expected from the analysis based on the internal variable theory of structural superplasticity at room temperature. As the temperature increased above 100 °C, however, the contribution from IS was observed at a very low strain rate range. A high elongation of ∼400% was obtained in a specimen of 10-μm-grain-size at 200 °C under a strain rate of 2×10−4/sec. Jointly appointed at Center for Advanced Aerospace Materials (CAAM)  相似文献   
224.
Three kinds of hot rolled steel slabs, viz. high strength steel, bake hardened steel and low carbon steel, were oxidized isothermally between 1100 and 1250 °C for up to 2 hr in 1 atm of air and an 85%N2–10%CO2–5%O2 gas mixture. The steels were oxidized in a similar fashion in both the atmospheres. The oxidation process followed an initial linear rate law, which then gradually transformed to a nearly parabolic rate law. Thick, porous and nonadherent scales formed rapidly, due to the high oxidation temperature. The scales formed consisted of Fe2O3,(Fe2O3+Fe3O4), (Fe3O4+Fe2O3 +FeO) and (FeO+Fe3O4) from the outer surface. The presence of supersaturated oxygen beneath the scale resulted in grain boundary oxidation and the formation of internal oxide precipitates.  相似文献   
225.
The corrosion behavior of Cr-N coated steels with different phases (-Cr, CrN and Cr2N) deposited by cathodic arc deposition on AISI H13 steel was investigated in a 3.5% NaCl solution at ambient temperature. Potentiodynamic polarization tests, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were the techniques applied to characterize the corrosion behavior. It was found that the CrN coating had a lower current density from potentiodynamic polarization tests than others. The porosity, corresponding to the ratio of the polarization resistance of the uncoated and the coated substrate, was higher in the Cr2N coating than in the other Cr-N coated steels. EIS measurements showed, for most of the Cr-N coated steels, that the Bode plot presented two time constants. Also, the Cr2N coating represented the characteristic of Warburg behavior after 72 h of immersion. The coating morphologies were examined in planar view and cross-section by SEM analysis and the results were compared with those of the electrochemical measurement. The CrN coating had a dense, columnar grain-sized microstructure with minor intergranular porosity. From the above results, it is concluded that the CrN coating provided a better corrosion protection than the other Cr-N coated steels.  相似文献   
226.
The texture of cold rolled aluminum sheet has been known to vary through the thickness due to inhomogeneous deformation during rolling. The copper texture is obtained in the center layer that is plane strain compressed while the shear texture in the surface layer, which is approximated by major 001 011 and minor 111 112 and 111 110 components. The stability condition of these components was calculated based on the full constraint Taylor-Bishop-Hill theory and could be described by a parameter13/dɛ11 with the suffixes 1 and 3 indicating the rolling and thickness directions, respectively.  相似文献   
227.
AB5-type intermetallic compounds were prepared by arc-melting in argon atmosphere. The composition of a stoichiometric compound LaNi3.6Al0.4Co0.7Mn0.3 with a hexagonal CaCu5 structure was varied by stoichiometric and nonstoichiometric addition of Ti. With the increase of the Ti y0.05 content in LaNi3.6Al0.4Co0.7Mn0.3Tiy, the hydrogen storage capacity is enhanced, whereas when y=0.1–0.3, it is decreased. The discharge capacity and cyclability are increased considerably by addition of titanium in the range of 0.02–0.1 with a maximum value at about 0.1%. The highest maximum capacity is achieved for a nonstoichiometric addition of 0.05% Ti. The kinetic properties are also additionally improved by the formation of a titanium-rich second phase. This can explain the improvement of the capacity for alloys with low Ti content. The decrease in capacity for high Ti content was also correlated with the amount of the Ti-rich phase. Therefore, the improvement of kinetics are due to the catalytic effect, grain boundary diffusion effect or more pronounced alloy pulverization upon cycling. This study has been aimed to improve the electrode properties of a series of multicomponent LaNi3.6Al0.4Co0.7Mn0.3Tiy (y=0.0, 0.02, 0.05, 0.1, 0.2, 0.3) alloys which have mutual complementary properties. All the prepared alloys have been subjected to analyses by EDS, SEM and XRD. In order to determine the hydrogen storage capacity, the pressure composition isotherms (PCT curves) have been used. The metal hydride electrodes were characterized by galvanostatic cycling test.  相似文献   
228.
This paper examines a new concept of corrosion surface damage analysis by using the digital image processing. Corrosion phenomena are analyzed using a digital value for morphological surface damages instead of electrochemical methods. Initial images are characterized by three categories: color, texture and shape features. To calculate corrosion surface damages color we use the interpretation of HIS model. For the texture attributes, the method of co-occurrence matrix is used. Five types of corrosion damage are examined. Multidimensional scaling procedure is used to define the classification plane. This study suggests a probabilistic method of decision-making. This analysis develops a method for automated identification system of corrosion damages and is supposed to be more advantageous than that of electrochemical techniques.  相似文献   
229.
Anodic oxidation is the process of creating a titanium oxide layer with various defects more dense and stable. In this study, a dense, stable and porous oxide layer was formed using anodic spark oxidation on pure titanium surface and hydroxyapatite crystals were formed on its surface via a hydrothermal treatment. A mixture of 0.02M−GP (Glycerolphosphate disodium salt) and 0.2M-CA (Calcium acetate) was used as an electrolyte. By increasing the anodizing voltage to 220, 260, 300, and 360 V, the effects of the anodizing voltage were examined by evaluating the film properties after anodization and a hydrothermal treatment. Breakdown occurred around 230 V. As the voltage increased after breakdown, the pore size increased. After the hydrothermal treatment, the amount of HA crystal precipitation was also increased as the voltage increased. The mean surface roughness (Ra) of the anodizing surface was also increased as the voltage increased. The Ra value was larger in the hydrothermally treated group compared with the group treated with anodization as a result of the HA crystals present on the surface after the hydrothermal treatment. Corrosion resistance of the surface modified by anodization was significantly increased in a saline solution compared to that for the non-treated group; this increased further after the hydrothermal treatment. These increases were most likely due to a thick stable oxide layer formed through anodization. Thus, it is believed that titanium with its surface modified through anodic spark oxidation would be a suitable biomaterial due to its corrosion resistance and biocompatibility.  相似文献   
230.
Boron distribution in a low-alloy steel (15B26:0.25C-0.29Cr-0.03Ti-0.028Al-0.0016B) has been characterized employing Fission Track Etching (FTE) method. The characteristics of boron distribution with variation of cooling rate after austenitization and through case-hardened depth after carburization were analyzed. Hardenability of 15B26 steel was also evaluated through Jominy-end-quench test and the results are as follows: It was observed that, in austenitized 15B26 steel, boron was distributed uniformly over the whole area of specimen with a little segregation along the austenite grain boundaries at higher cooling rates and boron precipitates were formed in the intergranular as well as transgranular regions at lower cooling rates. Jominy equivalents (HRC 35) of 15B26 steel were fairly increased between the Jominy temperatures of 820°C and 850°C, which might result from the increase of the amount of soluble boron in austenite due to the dissolution of borocarbides between 820°C and 850°C. In carburized 15B26 steel, the different through thickness features of boron distribution from the carburized surface were found; coarse nodular boron precipitates up to the depth of 150 μm; uniform distribution of dissolved boron between 150~650 μm; and segregation of boron atoms along grain boundaries in the regions deeper than 650 μm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号