首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   673篇
  免费   165篇
电工技术   3篇
化学工业   211篇
金属工艺   14篇
机械仪表   62篇
建筑科学   3篇
矿业工程   1篇
能源动力   14篇
轻工业   141篇
水利工程   1篇
无线电   124篇
一般工业技术   207篇
冶金工业   5篇
原子能技术   7篇
自动化技术   45篇
  2024年   2篇
  2023年   27篇
  2022年   17篇
  2021年   47篇
  2020年   36篇
  2019年   47篇
  2018年   44篇
  2017年   57篇
  2016年   60篇
  2015年   43篇
  2014年   66篇
  2013年   45篇
  2012年   44篇
  2011年   50篇
  2010年   37篇
  2009年   35篇
  2008年   37篇
  2007年   20篇
  2006年   17篇
  2005年   18篇
  2004年   15篇
  2003年   11篇
  2002年   18篇
  2001年   10篇
  2000年   10篇
  1999年   8篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
排序方式: 共有838条查询结果,搜索用时 15 毫秒
11.
12.
In an effort to develop highly functionalized flame retardant materials, hybrid nanocoatings are prepared by alternately depositing a positively charged polyaniline (PANi) and negatively charged montmorillonite (MMT) using the layer-by-layer (LbL) assembly technique. Carbon nanotubes (CNTs) are employed in polymer nanocomposites as effective reinforcement, where nanotubes are stabilized in MMT aqueous solution. The 3D structure and high density of CNTs deposited in the PANi/CNTs-MMT multilayers produce thicker and heavier coatings in comparison to the LbL assemblies without CNTs. Vertical and horizontal flame testing show that the incorporation of CNTs improves fire resistance. Additionally, cone calorimetry reveals that stacking two nanomaterials (MMT and CNTs) in a single coating shows a significant reduction in peak heat release rate (up to 51%), total smoke release (up to 47%), and total heat release (up to 37%) for the polyurethane foam. The enhancement of flame retardancy is attributed to a synergistic effect; MMT serves as a physical barrier that retards the diffusion of heat and gas. The addition of CNTs strengthens the thermal stability and high char yield. These results, coupled with the simplicity with which the LbL deposition is applied, present a viable alternative to halogen-free flame retardant nanocoatings to natural and synthetic fibers.  相似文献   
13.
The join is an important operator in processing data streams. To produce outputs continuously over unbounded data streams, sliding windows are generally used to limit the scope of the join at a certain time. In the existing join algorithms, only a simple type of windows have been considered, which are updated whenever a new data item arrives on any input stream. On the other hand, a more common type of windows have not been addressed yet, whose intervals are updated periodically, i.e., slid by a predefined time interval. In this paper, we consider the time-slide windows in joining multiple data streams. The algorithm for the time-slide window join can vary according to (i) how frequently the join is evaluated and (ii) which structure is used for windowing. Regarding this, possible algorithms are discussed, and experimental results that compare their performances are provided in this paper.  相似文献   
14.
A water‐developable negative photoresist based on the photocrosslinking of N‐phenylamide groups was prepared by the copolymerization of 4‐styrenesulfonic acid sodium salts (SSS) with N‐phenylmethacrylamide (copolymer A) or p‐hydroxy‐N‐phenylmethacrylamide (copolymer B), and its properties such as solubility changes, photochemical reaction, and photoresist characteristics were studied. The copolymer containing a relatively higher amount of SSS units was soluble in water. Solubility changes of the copolymers in the various buffer solutions of pH 4 ~ 11 and in water upon irradiation were observed by the measurement of insoluble fraction. The copolymers were soluble in water before irradiation, whereas they became insoluble upon irradiation with the UV light of 254 nm. The photochemical reaction of the copolymer studied by the UV and IR absorption spectroscopies indicated that a photo‐Fries rearrangement was favored for copolymer A, whereas a photocrosslinking reaction was predominate for copolymer B. Resist properties of the copolymers were studied by measurement of the normalized thickness and by development of the micropattern. Negative tone images with a resolution of 1 μm were obtained with these materials that have a sensitivity (D) of ~ 1100 mJ/cm2 with an aqueous developing process.© 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1172–1180, 2002  相似文献   
15.
A heating process for obtaining free-standing carbon nanotube emitters is presented with the aim of improving field-emission properties from the screen-printed multiwalled carbon nanotube (MWCNT) films. Using an atmosphere with an optimum combination of nitrogen and air for heat treatment of CNT films, the CNT emitters can be made to protrude from the surface. This allows for a high emission current and the formation of very uniform emission sites without special surface treatment. The morphological change of the CNT film by this technique has eliminated additional processing steps, such as surface treatment which may result in secondary contamination and damage to the film. Despite its simplicity the process provides a high reproducibility in emission current density which makes the films suitable for practical applications.  相似文献   
16.
Ce3+/Tb3+ co-doped NaMgBO3 phosphors were successfully synthesized by solid-state method. Under 381 nm excitation, the cyan emission owing to the 5d → 4f of Ce3+ ions and green emissions arising from the 5D4 → 7FJ (J = 6, 5, 4, and 3) transitions of Tb3+ ions were seen in all the phosphors. Through theoretical analysis, one knows that the energy transfer from Ce3+ to Tb3+ ions with high efficiency of 83.74% was contributed by dipole–dipole transition. Furthermore, the internal quantum efficiency of NaMgBO3:0.01Ce3+,0.03Tb3+ phosphor was 54.28%. Compared with that of at 303 K, the emission intensity of the developed products at 423 K still kept 73%, revealing the splendid thermal stability of the studied phosphors. Through utilizing the resultant phosphors as cyan-green components, the fabricated white-LED device exhibited an excellent correlated color temperature of 2785 K, high color-rendering index of 85.73, suitable luminance efficiency of 25.00 lm/W, and appropriate color coordinate of (0.4279, 0.3617). Aside from the superior photoluminescence, the synthesized phosphors also exhibited excellent cathode-luminescence properties which were sensitive to the current and accelerating voltage. Furthermore, the NaMgBO3:0.01Ce3+,0.03Tb3+ phosphors with multi-mode emissions were promising candidates for optical anti-counterfeiting. All the results indicated that the Ce3+/Tb3+ co-doped NaMgBO3 phosphors were potential multi-platforms toward white-LED, field emission displays, and optical anti-counterfeiting applications.  相似文献   
17.
A composite coating of aluminide-yttrium has shown excellent corrosion resistance in a cyclic high-temperature hot-corrosion environment. To understand the effect of yttrium on the stability of the composite coating, the specimens were prepared with various coating parameters of Y thickness, sequence of post heat treatment and surface condition before Y-ion plating. Performance of the composite coating was evaluated by isothermal oxidation and cyclic high-temperature hot corrosion. Isothermal-oxidation-test results show that the Y in the composite coating helps to form a thick and dense Al2O3 scale which is ductile and resistant to thermal stress. The Y in Al2O3 may act as a donor which leads to an increase in concentration of interstitial oxygen and, thus, increases in oxidation rate. The presence of Y2O3 and (Y, Al) O-type compounds in grain boundaries of Al2O3 and boundaries between the Al2O3 and NiAl effectively prohibits the fast diffusion of oxidants (such as O and S) and Al along grain boundaries. Consequently, it may induce slow diffusion through the matrix, and thus the corrosion resistance of the composite coating under cyclic hot corrosion increases substantially.  相似文献   
18.
The potential benefits of thumb-based touch interaction have not been fully exploited due to its usability problems and performance deterioration. Despite the well-known problems, mobile phone users often prefer thumb-based input method in their daily context of use. Without understanding input performance under realistic variability, design solutions may not address the problems adequately. This research aims to evaluate performance of one-handed thumb-based input compared to cradled finger-based input for the large number of users and varying task conditions. By investigating performance under a range of user- and task-variability, common patterns can be identified to help infer realistic performance in context of use. For this experiment, 259 participants were recruited balanced on gender and age. They performed user testing of moving an icon on a mobile touch-screen. Overall, the one-handed thumb input showed a 30% reduction in throughput compared to the cradled finger-based input, with significant reduction in speed and accuracy. Reduced throughput is attributed to inaccuracy rather than speed. In addition, the partial effects of touch position, dragging direction, and target size were investigated and quantified. In conclusion, performance could maintain constant throughput only for the finger-based input of limited task conditions, when realistic variability was introduced. Also, high variance of throughput for the thumb-based input led to poor conformity to Fitts’s law. The findings have implications for design of thumb-based touch interface to offset performance reduction and characterizing performance measure for thumb-based input method.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号