首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   405篇
  免费   16篇
电工技术   1篇
化学工业   93篇
金属工艺   5篇
机械仪表   7篇
建筑科学   13篇
能源动力   11篇
轻工业   24篇
水利工程   2篇
石油天然气   2篇
无线电   42篇
一般工业技术   77篇
冶金工业   22篇
原子能技术   1篇
自动化技术   121篇
  2024年   2篇
  2023年   2篇
  2022年   9篇
  2021年   17篇
  2020年   4篇
  2019年   18篇
  2018年   17篇
  2017年   13篇
  2016年   23篇
  2015年   6篇
  2014年   14篇
  2013年   35篇
  2012年   16篇
  2011年   29篇
  2010年   24篇
  2009年   24篇
  2008年   20篇
  2007年   19篇
  2006年   30篇
  2005年   19篇
  2004年   15篇
  2003年   9篇
  2002年   9篇
  2001年   4篇
  2000年   2篇
  1999年   6篇
  1998年   4篇
  1997年   1篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有421条查询结果,搜索用时 15 毫秒
11.
12.
Glass strength can be increased by applying epoxy based surface coatings. A number of models have been presented in the literature to explain the strengthening afforded by these coatings but until now there has been no clear evidence to definitively support one model over another. In this work, finite element models (FEM) of four-point bending test specimens have been developed. These models have been used to study the strength of cracked uncoated and surface coated specimens in order to identify the strengthening mechanism. The FEM results showed that full filling of the crack using epoxy coating is sufficient to heal the crack if the coating inside the crack is ideally glued to the crack surfaces. It is also shown that under these circumstances the coating modulus is relatively unimportant parameter. FEA results for partially filled cracks show that increasing the filled percentage increases the strengthening. Fractographic analysis of the 10 kg indented and coated samples showed that the fracture surfaces do not follow the median crack symmetric plane and that fracture started from another plane when coated properly, however the fracture surface of these samples still starts from the indentation site. On the other hand, fractographic analysis of the 1 kg indented and properly coated samples showed that the samples failed from their edges which indicate that the crack was overcome. The finite element results show that the diamond imprint resulting from the Vickers indentation play an important role in this type of fracture.  相似文献   
13.
Aluminum nitride (AlN) hollow nanofibers were synthesized via plasma‐enhanced atomic layer deposition using sacrificial electrospun polymeric nanofiber templates having different average fiber diameters (~70, ~330, and ~740 nm). Depositions were carried out at 200°C using trimethylaluminum and ammonia precursors. AlN‐coated nanofibers were calcined subsequently at 500°C for 2 h to remove the sacrificial polymeric nanofiber template. SEM studies have shown that there is a critical wall thickness value depending on the template's average fiber diameter for AlN hollow nanofibers to preserve their shapes after the template has been removed by calcination. Best morphologies were observed for AlN hollow nanofibers prepared by depositing 800 cycles (corresponding to ~69 nm) on nanofiber templates having ~330 nm average fiber diameter. TEM images indicated uniform wall thicknesses of ~65 nm along the fiber axes for samples prepared using templates having ~70 and ~330 nm average fiber diameters. Synthesized AlN hollow nanofibers were polycrystalline with a hexagonal crystal structure as determined by high‐resolution TEM and selected area electron diffraction. Chemical compositions of coated and calcined samples were studied using X‐ray photoelectron spectroscopy (XPS). High‐resolution XPS spectra confirmed the presence of AlN.  相似文献   
14.
Dithiacarbamates reacted with malononitrile dimer to give 1,4-dihydropyridine-2-thiols. The structures of the obtained products were proven by IR, mass, and NMR spectra and elemental analyses. The reaction mechanism is also discussed.  相似文献   
15.
Recent studies suggest that leukemia stem cells (LSCs) play a critical role in the initiation, propagation, and relapse of leukemia. Herein we show that (?)‐15‐methylene‐eburnamonine, a derivative of the alkaloid (?)‐eburnamonine, is cytotoxic against acute and chronic lymphocytic leukemias (ALL and CLL) and acute myelogenous leukemia (AML). The agent also decreases primary LSC frequency in vitro. The cytotoxic effects appear to be mediated via the oxidative stress pathways. Furthermore, we show that the compound kills AML, ALL, and CLL stem cells. By the use of a novel humanized bone marrow murine model of leukemia (huBM/NSG), it was found to decrease progenitor cell engraftment.  相似文献   
16.
In this study, annealing influence on crystallization and scratch behavior of neat and multi‐wall carbon nanotube (MWNT) reinforced poly(ether ether ketone) (PEEK) nanocomposites have been investigated. Crystallization behavior of normal and annealed samples was investigated by using differential scanning calorimeter (DSC). Scratch behavior of normal and annealed samples was investigated by using micro scratch tester. In DSC analysis, it was detected that, melting enthalpy of annealed neat PEEK was increased sharply when compared to neat PEEK. Melting enthalpies of annealed PEEK nanocomposites prepared with addition of up to 1 wt% MWNT were increased with a decreased trend. However, nanocomposites with higher contents of MWNTs (>1 wt%) were dramatically affected by annealing process and melting enthalpy decreased sharply. Friction coefficient values of “annealed MWNT reinforced PEEK composites” were found to be lower than “normal PEEK composites.” Annealing process affects scratch hardness of both annealed and MWNT reinforced PEEK. Annealed nanocomposites with various MWNT concentrations showed higher scratch hardness values than normal PEEK nanocomposites. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   
17.
Thermoplastic polyolefin (TPO) films with permanent, silicone‐rich, low‐friction, low‐abrasion surfaces were obtained by melt blending of high‐density polyethylene (HDPE) and polypropylene (PP) with polydimethylsiloxane (PDMS)‐containing block copolymers. Two different block copolymers, a siloxane–urea segmented copolymer and a polycaprolactone‐b‐PDMS triblock copolymer were used as modifiers at levels between 0.1 and 5.0% by weight. Blends were prepared in a twin‐screw extruder. Modified films displayed surfaces with very low friction coefficients and high abrasion resistance, which depended on the type and the level of additive incorporated into the system. Bulk properties of these modified systems, such as crystallization and melting behavior or tensile properties, were not affected. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 535–540, 2002; DOI 10.1002/app.10279  相似文献   
18.
This study reports on the deposition of a hydrophobic coating on polyurethane (PU)-based synthetic leather through a plasma polymerization method and investigates the hydrophobic behavior of the plasma-coated substrate. The silicon compound of hexamethyldisiloxane (HMDSO), inactive gas argon (Ar), and toluene were used to impart surface hydrophobicity to a PU-based substrate. Surface hydrophobicity was analyzed by water contact angle measurements. Surface hydrophobicity was increased by deposition of compositions of 100% HMDSO, 3:1 HMDSO/toluene, and 1:1 HMDSO/toluene. Optimum conditions of 40 W, 30 s plasma treatment resulted in essentially the same initial contact angle results of approximately 100° for all three treatment compositions. The initial water contact angle for untreated material was about 73°. A water droplet took 1800 s to spread out on the plasma-treated sample after it had been placed on the sample surface. An increase in plasma power also led to a decrease in contact angle, which may be attributed to oxidization of HMDSO during plasma deposition. XPS analysis showed that plasma polymerization of HMDSO/toluene compositions led to a significant increase in atomic percentage of Si compound responsible for the hydrophobic surface. The easy clean results for the treated and untreated PU-based synthetic leather samples clearly showed that the remaining stain on the plasma-polymerized sample was less than that of untreated sample. The plasma-formed coating was both hydrophobic and formed a physical barrier against water and stain.  相似文献   
19.
Functional nylon 6,6 nanofibers incorporating cyclodextrins (CD) were developed via electrospinning. Enhanced thermal stability of the nylon 6,6/CD nanofibers was observed due to interaction between CD and nylon 6,6. X‐ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy studies indicated the existence of some CD molecules on the surface of the nanofibers. Electrospun nylon 6,6 nanofibers without having CD were ineffective for entrapment of toluene vapor from the environment, whereas nylon 6,6/CD nanofibrous membranes can effectively entrap toluene vapor from the surrounding by taking advantage of the high surface‐volume ratio of nanofibers with the added advantage of inclusion complexation capability of CD presenting on the nanofiber surface. The modeling studies for formation of inclusion complex between CD and toluene were also performed by using ab initio techniques. Our results suggest that nylon 6,6/CD nanofibrous membranes may have potential to be used as air filters for the removal of organic vapor waste from surroundings. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41941.  相似文献   
20.
A series of hybrid networks based on polyhedral oligomeric silsesquioxane (POSS) were prepared by thiol-epoxy click reaction using commercially available octakis-glycidyl-POSS (G-POSS), trimethylolpropane triglycidyl ether, and trimethylolpropane tris(3-mercaptopropionate) as monomers. The click reaction was simply catalyzed by lithium hydroxide which proceeded readily at ambient conditions in very good yields. The incorporation of G-POSS into the network was clearly determined by transmission electron microscopy, FTIR, and 1H-NMR spectroscopy techniques performed with a model study using 1-butane thiol and G-POSS molecules. The homogeneous distribution of G-POSS up to 5 wt% in the hybrid network was apparently confirmed by morphological investigations. By increasing G-POSS content higher than 5 wt%, the heterogeneous dispersion of G-POSS was determined from the tensile strength measurements. The significant decrease in tensile strength was possible due to the agglomeration of G-POSS. On the other hand, thermal properties of hybrid networks were compared together by thermogravimetric analyses, where all samples exhibited one-step degradation in the range of 220–500 °C. The thermal decomposition of hybrid network led to complete degradation of the organic part and favored the formation of stable carbonaceous and inorganic residues as char. Thus, the char yields of hybrid networks were increased to 6.2, 7.8, 10.1, 12.7, and 15.1% by G-POSS loadings from 0 to 15 wt%. This improvement was also a proof of the incorporation of G-POSS into the hybrid networks that resulted in high heat-resistant POSS-based hybrid networks compared to a sample without G-POSS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号