首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   9篇
电工技术   2篇
化学工业   45篇
金属工艺   2篇
机械仪表   6篇
建筑科学   3篇
能源动力   13篇
轻工业   9篇
石油天然气   2篇
无线电   17篇
一般工业技术   48篇
冶金工业   4篇
自动化技术   16篇
  2024年   1篇
  2023年   10篇
  2022年   15篇
  2021年   5篇
  2020年   9篇
  2019年   11篇
  2018年   9篇
  2017年   4篇
  2016年   10篇
  2015年   8篇
  2014年   6篇
  2013年   13篇
  2012年   7篇
  2011年   8篇
  2010年   6篇
  2009年   6篇
  2008年   12篇
  2007年   8篇
  2006年   1篇
  2005年   2篇
  2002年   2篇
  2000年   1篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1989年   1篇
  1975年   1篇
  1974年   1篇
  1969年   1篇
排序方式: 共有167条查询结果,搜索用时 15 毫秒
91.
Permalloy (NiFeMo) nanoparticles were fabricated by laser ablation of bulk material in water with a UV pulsed laser. Transmission electron microscope images showed that approximately spherical particles about 50 nm in diameter were formed in the ablation process. All diffraction peaks corresponding to the bulk material were present in the nanoparticles. In addition to these peaks several new peaks were observed in the nanoparticles, which were attributed to nickel oxide.  相似文献   
92.
The effect of CO2 was studied for cobalt and iron Fischer–Tropsch (FT) synthesis. CO2 behaves differently in the presence of CO over cobalt and iron catalysts in terms of hydrogenation. A systematic increase of the CO2 mole fraction of carbon in the feed gas mixture alters the product distribution dramatically for cobalt FT synthesis with CO2 behaving like an inert gas at higher partial pressure of CO. With cobalt, CO appears to compete with CO2 for adsorption. Using an iron FT catalyst, hydrogenation of CO2 was effected due to the presence of the reverse water–gas shift activity of the catalyst which converts CO2 to hydrocarbons through the formation of CO. Unlike the cobalt catalyst, the product distribution was only slightly altered with increasing CO2 content in the feed gas mixture to the iron catalyst. This difference in behavior of CO2 over cobalt and iron could be attributed to the absence of reverse water–gas shift activity on cobalt and hydrogenation of CO2 to hydrocarbons—other than methane—will be derived through the formation of CO.  相似文献   
93.
94.
This paper addresses the problem of simultaneous scheduling of machines and two identical automated guided vehicles (AGVs) in a flexible manufacturing system (FMS). For solving this problem, a new meta-heuristic differential evolution (DE) algorithm is proposed. The problem consists of two interrelated problems, scheduling of machines and scheduling of AGVs. A simultaneous scheduling of these, in order to minimise the makespan will result in a FMS being able to complete all the jobs assigned to it at the earliest time possible, thus saving resources. An increase in the performance of the FMS under consideration would be expected as a result of making the scheduling of AGVs as an integral part of the overall scheduling activity. The algorithm is tested by using problems generated by various researchers and the makespan obtained by the algorithm is compared with that obtained by other researchers and analysed.  相似文献   
95.
Double‐walled carbon nanotube (DWCNT)‐reinforced polyester nanocomposites were prepared and tested to characterize their mechanical properties. The DWCNTs were functionalized to improve their dispersion within the polyester matrix. The improvement in the mechanical properties shows that the functionalized DWCNTs have better distribution within, and good adhesion with, the polyester matrix. A comparison of the mechanical properties of nanocomposites reinforced by functionalized and nonfunctionalized DWCNTs confirms that the functionalization leads to substantially improved composites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   
96.
2-[(E)-{(1S,2R)-1-hydroxy-1-phenylpropan-2-ylimino}methyl]phenol has been synthesized and its influence on corrosion of mild steel in 1?M HCl solution has been studied by means of weight loss and electrochemical measurements under various circumstances. The inhibitor showed a maximum of 91?% of inhibition efficiency at 100?ppm. Interestingly, the inhibition efficiency has decreased on increasing the inhibitor concentration. This abnormal behavior is attributed to the release of phenolic hydrogen from the molecule. The mechanism of corrosion inhibition follows Langmuir adsorption isotherm. The negative ?G ads indicates the spontaneous adsorption of the inhibitor on mild steel surface. Potentiodynamic polarization studies show that it is a mixed type inhibitor with predominant cathodic inhibition. UV?CVisible spectroscopy of the inhibitor and inhibitor adsorbed on the mild steel confirmed the chemical interaction of the inhibitor with the metal surface.  相似文献   
97.
Amphiphilic biosynthetic hydrogels comprising natural polysaccharide alginate (I) and synthetic polyester polypropylene fumarate (II) units were prepared by crosslinking the copolymer of I and II with calcium ion and vinyl monomers viz, 2-hydroxyethyl methacrylate (HEMA), methyl methacrylate (MMA), butyl methacrylate (BMA) and N,N′-methylene bisacrylamide (NMBA). Three fast degradable hydrogels, ALPF-MMA, ALPF-HEMA and ALPF-BMA and one slow degradable hydrogel ALPF-NMBA were prepared. These hydrogels are amphiphilic and able to hold sufficient amount of proteins on their surfaces. All these hydrogels are found to be hemocompatible, cytocompatible and genocompatible. ALPF-NMBA promotes infiltration of L929 fibroblasts and 3D growth of H9c2 cardiomyoblasts and long-term viability.  相似文献   
98.
Tamilarasi  R.  Prabu  S. 《The Journal of supercomputing》2021,77(11):13243-13261
The Journal of Supercomputing - Hyperspectral imagery facilitates the determination of various urban-correlated characteristics, such as features on the Earth's surface, including roads, trees,...  相似文献   
99.
100.
Journal of Materials Science: Materials in Electronics - Face-contact heterojunctions in 2D materials effectively separate the charge carriers and enhance the degradation efficiency of the...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号