首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11114篇
  免费   975篇
  国内免费   44篇
电工技术   174篇
综合类   24篇
化学工业   2602篇
金属工艺   292篇
机械仪表   421篇
建筑科学   382篇
矿业工程   6篇
能源动力   452篇
轻工业   807篇
水利工程   37篇
石油天然气   4篇
无线电   1942篇
一般工业技术   2384篇
冶金工业   903篇
原子能技术   134篇
自动化技术   1569篇
  2024年   19篇
  2023年   142篇
  2022年   214篇
  2021年   328篇
  2020年   273篇
  2019年   311篇
  2018年   397篇
  2017年   318篇
  2016年   463篇
  2015年   403篇
  2014年   526篇
  2013年   799篇
  2012年   643篇
  2011年   812篇
  2010年   645篇
  2009年   617篇
  2008年   607篇
  2007年   497篇
  2006年   453篇
  2005年   365篇
  2004年   331篇
  2003年   278篇
  2002年   264篇
  2001年   236篇
  2000年   202篇
  1999年   218篇
  1998年   340篇
  1997年   250篇
  1996年   189篇
  1995年   140篇
  1994年   121篇
  1993年   83篇
  1992年   60篇
  1991年   63篇
  1990年   60篇
  1989年   55篇
  1988年   38篇
  1987年   47篇
  1986年   54篇
  1985年   35篇
  1984年   26篇
  1983年   30篇
  1982年   9篇
  1981年   24篇
  1980年   23篇
  1979年   13篇
  1978年   15篇
  1977年   20篇
  1976年   31篇
  1975年   14篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
101.
A wireless MAC protocol for the CDMA network is proposed which provides the various bit rates required to support the integrated multimedia services. The proposed method improves the spreading codes utilisation efficiency by sharing limited spreading codes among all mobile terminals  相似文献   
102.
An unbiased algorithm of generalized linear least squares (GLLS) for parameter estimation of nonuniformly sampled biomedical systems is proposed. The basic theory and detailed derivation of the algorithm are given. This algorithm removes the initial values required and computational burden of nonlinear least regression and achieves a comparable estimation quality in terms of the estimates' bias and standard deviation. Therefore, this algorithm is particular useful in image-wide (pixel-by-pixel based) parameter estimation, e.g., to generate parametric images from tracer dynamic studies with positron emission tomography. An example is presented to demonstrate the performance of this new technique. This algorithm is also generally applicable to other continuous system parameter estimation.  相似文献   
103.
A strongly-guided one-dimensional (1-D) waveguide called a photonic wire has high spontaneous emission coupling efficiency, enabling one to realize low-threshold lasers. Combined with the use of 1-D photonic bandgap structures consisting of arrays of holes etched within the photonic wire, novel microcavity lasers can be realized. We report the nanofabrication of a photonic bandgap structure for 1.5 /spl mu/m wavelength along a InGaAsP photonic wire, and discuss numerical simulations for its electrodynamics.  相似文献   
104.
We have obtained directional light output from a recently realized InGaAsP photonic-wire microcavity ring lasers. The output was achieved by fabricating a 0.45-/spl mu/m-wide U-shape waveguide next to a 10-/spl mu/m diameter microcavity ring laser. The laser has a threshold pump power of around 124 /spl mu/W when optically pumped at 514 nm. It is comparable to the former structure without output coupling. The output coupling efficiency can be controlled carefully by choosing the spacing between the laser cavity and the waveguide.  相似文献   
105.
In this study, two conducting polymers, polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT), were used to construct an electrochromic device (ECD). PANI was employed as the anodic coloring polymer while PEDOT was used as the cathodic coloring polymer. The electrochemical and optical properties of PANI, which has a coloration efficiency of 25 cm2/C at 570 nm, were coupled with the complementary coloring material, PEDOT, which has a coloration efficiency of 206 cm2/C at 570 nm. A suitable operating potential window was switched between −0.6 and 1.0 V to explore the cycle life of the ECD. We tested the PANI–PEDOT ECD, which consisted of PANI, PEDOT, and an organic electrolyte containing 0.1 M LiClO4 in propylene carbonate and 1 mM HClO4. The transmittance of the ECD at 570 nm changed from 58% (−0.6 V) to 14% (1.0 V) with a coloration efficiency of 285 cm2/C. Within the selected operating voltage range, the PANI–PEDOT ECD could be cycled for up to 2×104 cycles.  相似文献   
106.
Herein, the exploration of natural plant‐based “spores” for the encapsulation of macromolecules as a drug delivery platform is reported. Benefits of encapsulation with natural “spores” include highly uniform size distribution and materials encapsulation by relatively economical and simple versatile methods. The natural spores possess unique micromeritic properties and an inner cavity for significant macromolecule loading with retention of therapeutic spore constituents. In addition, these natural spores can be used as advanced materials to encapsulate a wide variety of pharmaceutical drugs, chemicals, cosmetics, and food supplements. Here, for the first time a strategy to utilize natural spores as advanced materials is developed to encapsulate macromolecules by three different microencapsulation techniques including passive, compression, and vacuum loading. The natural spore formulations developed by these techniques are extensively characterized with respect to size uniformity, shape, encapsulation efficiency, and localization of macromolecules in the spores. In vitro release profiles of developed spore formulations in simulated gastric and intestinal fluids have also been studied, and alginate coatings to tune the release profile using vacuum‐loaded spores have been explored. These results provide the basis for further exploration into the encapsulation of a wide range of therapeutic molecules in natural plant spores.  相似文献   
107.
The reduction of carbon dioxide (CO2) into chemical feedstock is drawing increasing attention as a prominent method of recycling atmospheric CO2. Although many studies have been devoted in designing an efficient catalyst for CO2 conversion with noble metals, low selectivity and high energy input still remain major hurdles. One possible solution is to use the combination of an earth‐abundant electrocatalyst with a photoelectrode powered by solar energy. Herein, for the first time, a p‐type silicon nanowire with nitrogen‐doped graphene quantum sheets (N‐GQSs) as heterogeneous electrocatalyst for selective CO production is demonstrated. The photoreduction of CO2 into CO is achieved at a potential of ?1.53 V versus Ag/Ag+, providing 0.15 mA cm?2 of current density, which is 130 mV higher than that of a p‐type Si nanowire decorated with well‐known Cu catalyst. The faradaic efficiency for CO is 95%, demonstrating significantly improved selectivity compared with that of bare planar Si. The density functional theory (DFT) calculations are performed, which suggest that pyridinic N acts as the active site and band alignment can be achieved for N‐GQSs larger than 3 nm. The demonstrated high efficiency of the catalytic system provides new insights for the development of nonprecious, environmentally benign CO2 utilization.  相似文献   
108.
Personal communication service (PCS) networks offer mobile users diverse telecommunication applications, such as voice, data, and image, with different bandwidth and quality-of-service (QoS) requirements. This paper proposes an analytical model to investigate the performance of an integrated voice/data mobile network with finite data buffer in terms of voice-call blocking probability, data loss probability, and mean data delay. The model is based on the movable-boundary scheme that dynamically adjusts the number of channels for voice and data traffic. With the movable-boundary scheme, the bandwidth can be utilized efficiently while satisfying the QoS requirements for voice and data traffic. Using our model, the impact of hot-spot traffic in the heterogeneous PCS networks, in which the parameters (e.g., number of channels, voice, and data arrival rates) of cells can be varied, can be effectively analyzed. In addition, an iterative algorithm based on our model is proposed to determine the handoff traffic, which computes the system performance in polynomial-bounded time. The analytical model is validated by simulation  相似文献   
109.
Antimony triselenide (Sb2Se3) nanoflake-based nitrogen dioxide (NO2) sensors exhibit a progressive bifunctional gas-sensing performance, with a rapid alarm for hazardous highly concentrated gases, and an advanced memory-type function for low-concentration (<1 ppm) monitoring repeated under potentially fatal exposure. Rectangular and cuboid shaped Sb2Se3 nanoflakes, comprising van der Waals planes with large surface areas and covalent bond planes with small areas, can rapidly detect a wide range of NO2 gas concentrations from 0.1 to 100 ppm. These Sb2Se3 nanoflakes are found to be suitable for physisorption-based gas sensing owing to their anisotropic quasi-2D crystal structure with extremely enlarged van der Waals planes, where they are humidity-insensitive and consequently exhibit an extremely stable baseline current. The Sb2Se3 nanoflake sensor exhibits a room-temperature/low-voltage operation, which is noticeable owing to its low energy consumption and rapid response even under a NO2 gas flow of only 1 ppm. As a result, the Sb2Se3 nanoflake sensor is suitable for the development of a rapid alarm system. Furthermore, the persistent gas-sensing conductivity of the sensor with a slow decaying current can enable the development of a progressive memory-type sensor that retains the previous signal under irregular gas injection at low concentrations.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号