首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24032篇
  免费   340篇
  国内免费   123篇
电工技术   511篇
综合类   66篇
化学工业   3361篇
金属工艺   957篇
机械仪表   665篇
建筑科学   557篇
矿业工程   67篇
能源动力   600篇
轻工业   2031篇
水利工程   213篇
石油天然气   182篇
武器工业   1篇
无线电   2636篇
一般工业技术   4166篇
冶金工业   6325篇
原子能技术   423篇
自动化技术   1734篇
  2021年   161篇
  2020年   123篇
  2019年   162篇
  2018年   234篇
  2017年   240篇
  2016年   258篇
  2015年   181篇
  2014年   309篇
  2013年   839篇
  2012年   520篇
  2011年   797篇
  2010年   573篇
  2009年   639篇
  2008年   738篇
  2007年   769篇
  2006年   649篇
  2005年   730篇
  2004年   603篇
  2003年   645篇
  2002年   693篇
  2001年   684篇
  2000年   607篇
  1999年   628篇
  1998年   2210篇
  1997年   1442篇
  1996年   1083篇
  1995年   743篇
  1994年   636篇
  1993年   664篇
  1992年   373篇
  1991年   350篇
  1990年   352篇
  1989年   353篇
  1988年   297篇
  1987年   273篇
  1986年   251篇
  1985年   285篇
  1984年   220篇
  1983年   205篇
  1982年   191篇
  1981年   234篇
  1980年   211篇
  1979年   167篇
  1978年   162篇
  1977年   288篇
  1976年   403篇
  1975年   128篇
  1974年   111篇
  1973年   120篇
  1972年   96篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
SMYD3 is a multifunctional epigenetic enzyme with lysine methyltransferase activity and various interaction partners. It is implicated in the pathophysiology of cancers but with an unclear mechanism. To discover tool compounds for clarifying its biochemistry and potential as a therapeutic target, a set of drug-like compounds was screened in a biosensor-based competition assay. Diperodon was identified as an allosteric ligand; its R and S enantiomers were isolated, and their affinities to SMYD3 were determined (KD=42 and 84 μM, respectively). Co-crystallization revealed that both enantiomers bind to a previously unidentified allosteric site in the C-terminal protein binding domain, consistent with its weak inhibitory effect. No competition between diperodon and HSP90 (a known SMYD3 interaction partner) was observed although SMYD3–HSP90 binding was confirmed (KD=13 μM). Diperodon clearly represents a novel starting point for the design of tool compounds interacting with a druggable allosteric site, suitable for the exploration of noncatalytic SMYD3 functions and therapeutics with new mechanisms of action.  相似文献   
992.
Investigations on the production and development of nanoparticle-reinforced polymer materials have been attracted attention by researchers. Various nanoparticles have been used to improve the mechanical, chemical, thermal, and physical properties of polymer matrix composites. Boron compounds come to the fore to improve the mechanical and thermal properties of polymers. In this study, mechanical, thermal, and structural properties of structural adhesive have been examined by adding nano hexagonal boron nitride (h-BN) to epoxy matrix at different percentages (0.5, 1, 2, 3, 4, and 5%). For this purpose, nano h-BN particles were functionalized with 3-aminopropyltriethoxysilane (APTES) to disperse the h-BN nanoparticles homogeneously in epoxy matrix and to form a strong bond at the matrix interface. Two-component structural epoxy adhesive was modified by using functionalized h-BN nanoparticles. The structural and thermal properties of the modified adhesives were investigated by scanning electron microscopy and energy dispersion X-ray spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis techniques. Tensile test and dynamic mechanical analysis were performed to determine the mechanical properties of the adhesives. When the results obtained from analysis were examined, it was seen that the nano h-BN particles functionalized with APTES were homogeneously dispersed in the epoxy matrix and formed a strong bond. In addition that, it was concluded from the experimental results that the thermal and mechanical properties of adhesives were improved by adding functionalized nano h-BN particles into epoxy at different ratios.  相似文献   
993.
In the presented study, the structural, thermal, and mechanical properties of the nanocomposites were investigated by doping silanized hexagonal boron carbide (h-B4C) nanoparticles in varying proportions (0.5%, 1%, 2%, 3%, 4%, and 5%) into the epoxy resin by weight. For this purpose, the surfaces of h-B4C nanoparticles were silanized by using 3-(glycidyloxypropyl) trimethoxysilane (GPS) to improve adhesion between h-B4C nanoparticles and epoxy matrix. Then, the silanized nanoparticles were added to the resin by ultrasonication and mechanical stirring techniques to produce nanocomposites. The bond structure differences of silanized B4C nanoparticles (s-B4C) and nanoparticle doped composites were investigated by using Fourier transform infrared spectroscopy. Scanning electron microscopy and energy dispersion X-ray spectroscopy (SEM-EDS) technique was used to examine the distribution of nanoparticles in the modified nanocomposites. Differential scanning calorimetry and thermogravimetric analysis techniques were used to determine the thermal properties of the neat and s-B4C doped nanocomposites. The tensile test and dynamic mechanical analysis were performed to determine the mechanical properties. When the experimental results were examined, changes in the bonding structure of the s-B4C nanoparticles doped nanocomposites and significant improvements in the mechanical and thermal properties were observed. The optimum doping ratio was determined as 2% by weight. At this doping ratio, the Tg, tensile strength and storage modulus increased approximately 18%, 35%, and 44% compared to the neat composite, respectively.  相似文献   
994.
Pitting corrosion studies were carried out on cold worked (5%, 10%, 15%, 20%, 30% and 40%) nitrogen-bearing (0.05%, 0.1% and 0.22% N) type 316L austenitic stainless steels in neutral chloride medium. Potentiodynamic anodic polarisation study revealed that cold working up to 20% enhanced the pitting resistance, and thereafter a sudden decrease in pitting resistance was noticed at 30% and 40% cold working. Increase in nitrogen content was beneficial up to 20% cold work in improving the pitting corrosion resistance, beyond which it had a detrimental effect at 30% and 40% cold working. The role of nitrogen in influencing the deformation band width and dislocation configuration is explained based on the results of transmission electron microscopy investigations. Scanning electron microscopy observation of the pitted specimens indicated decreasing size and increasing density of pits, along the deformation bands with increasing nitrogen for 40% cold worked specimens. The macrohardness values increased as the cold working increased from 0% to 40%. X-ray diffraction studies revealed the increased peak broadening of austenite peak {0 2 2} with increase in cold working. The relationship between pitting corrosion and deformation structures with respect to nitrogen addition and cold working is discussed.  相似文献   
995.
In bulk metal forming the tribological state is significantly dependent on the surface topography of tool and workpiece. To provide the process with an improved tribological behaviour in some cases the billet's surface is prepared by shot blasting. Micro texturing of the tool surface provides an additional opportunity to optimise the frictional conditions.This paper deals with the investigation of micro texturing of the surface of TiN-coated tools with regard to their tribological behaviour in the field of cold forging. The micro textures are applied by excimer laser radiation. Tool life investigations in an industrial press shop yield that the tool surface can be improved significantly leading to higher tool life.  相似文献   
996.
在本文中,我们给出下列定理:设G为阶是n≥3的2—连通,K_(13)—free图且满足NC(G)≥n—δ—2。则G为哈米顿的,这里NC(G)=min{|N(u)N(v)|E}。  相似文献   
997.
998.
999.
The method of growth from a melt solution was used to obtain iron-alloyed (0.08 at %) Al–Cu–Co single crystals with a decagonal symmetry. The temperature dependences of the electrical resistivity in magnetic fields of 0–18 T were measured using samples oriented in the periodic direction (ρp(T)) and in the quasi-periodic plane (ρq(T)). A strong anisotropy of the resistivity was observed; the ρp(T) curve is linear, whereas the ρq(T) curve is approximated well by a second-order polynomial. A strong anisotropy of the magnetoresistance was also observed; a positive magnetoresistance Δρ/ρ ~ 10–3 for the current flowing in the quasiperiodic plane; and a weak (close to zero) negative magnetoresistance for the current flowing along the periodic direction.  相似文献   
1000.
Oxidation of the Cr20Mn20Fe20Co20Ni20 (at%) high-entropy alloy (HEA) was investigated at 500–900 °C in laboratory air. At 600 °C the oxide was mainly Mn2O3 with a thin inner Cr2O3 layer; at 700 and 800 °C it was mainly Mn2O3 with some Cr enrichment; at 900 °C it was Mn3O4. The oxidation rate was initially linear but became parabolic at longer times with an activation energy of 130 kJ/mol, comparable to that of Mn diffusion in Mn oxides but much lower than that for sluggish diffusion of Mn in the HEA. The diffusion of Mn through the oxide is considered to be the rate-limiting process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号