首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   0篇
电工技术   2篇
机械仪表   7篇
轻工业   1篇
无线电   88篇
一般工业技术   4篇
冶金工业   2篇
自动化技术   11篇
  2017年   1篇
  2012年   6篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   7篇
  2007年   7篇
  2006年   7篇
  2005年   11篇
  2004年   8篇
  2003年   9篇
  2002年   6篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   4篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1958年   1篇
排序方式: 共有115条查询结果,搜索用时 0 毫秒
81.
This note describes a practical improvement in the computational efficiency of the spectral signal-to-noise ratio (SSNR) resolution criterion for correlation-averaged images. The total set of N images is randomly partitioned into ng subsets, each subset is separately averaged, and a reduced form of the SSNR is computed from these average images. In general, larger values of ng achieve lower statistical uncertainty, while smaller values of ng are computationally more expedient. It is shown that, for negatively stained data, a judicious compromise is achieved with 10 less than or equal to ng less than or equal to 20, regardless of how large N may be.  相似文献   
82.
Fast parametric elastic image registration   总被引:19,自引:0,他引:19  
We present an algorithm for fast elastic multidimensional intensity-based image registration with a parametric model of the deformation. It is fully automatic in its default mode of operation. In the case of hard real-world problems, it is capable of accepting expert hints in the form of soft landmark constraints. Much fewer landmarks are needed and the results are far superior compared to pure landmark registration. Particular attention has been paid to the factors influencing the speed of this algorithm. The B-spline deformation model is shown to be computationally more efficient than other alternatives. The algorithm has been successfully used for several two-dimensional (2-D) and three-dimensional (3-D) registration tasks in the medical domain, involving MRI, SPECT, CT, and ultrasound image modalities. We also present experiments in a controlled environment, permitting an exact evaluation of the registration accuracy. Test deformations are generated automatically using a random hierarchical fractional wavelet-based generator.  相似文献   
83.
Shift-orthogonal wavelet bases   总被引:2,自引:0,他引:2  
Shift-orthogonal wavelets are a new type of multiresolution wavelet bases that are orthogonal with respect to translation (or shifts) within one level but not with respect to dilations across scales. We characterize these wavelets and investigate their main properties by considering two general construction methods. In the first approach, we start by specifying the analysis and synthesis function spaces and obtain the corresponding shift-orthogonal basis functions by suitable orthogonalization. In the second approach, we take the complementary view and start from the digital filterbank. We present several illustrative examples, including a hybrid version of the Battle-Lemarie (1987, 1988) spline wavelets. We also provide filterbank formulas for the fast wavelet algorithm. A shift-orthogonal wavelet transform is closely related to an orthogonal transform that uses the same primary scaling function; both transforms have essentially the same approximation properties. One experimentally confirmed benefit of relaxing the interscale orthogonality requirement is that we can design wavelets that decay faster than their orthogonal counterpart  相似文献   
84.
This paper proposes a new family of bivariate, nonseparable splines, called hex-splines, especially designed for hexagonal lattices. The starting point of the construction is the indicator function of the Voronoi cell, which is used to define in a natural way the first-order hex-spline. Higher order hex-splines are obtained by successive convolutions. A mathematical analysis of this new bivariate spline family is presented. In particular, we derive a closed form for a hex-spline of arbitrary order. We also discuss important properties, such as their Fourier transform and the fact they form a Riesz basis. We also highlight the approximation order. For conventional rectangular lattices, hex-splines revert to classical separable tensor-product B-splines. Finally, some prototypical applications and experimental results demonstrate the usefulness of hex-splines for handling hexagonally sampled data.  相似文献   
85.
A general sampling theory for nonideal acquisition devices   总被引:1,自引:0,他引:1  
The authors first describe the general class of approximation spaces generated by translation of a function ψ(x), and provide a full characterization of their basis functions. They then present a general sampling theorem for computing the approximation of signals in these subspaces based on a simple consistency principle. The theory puts no restrictions on the system input which can be an arbitrary finite energy signal; bandlimitedness is not required. In contrast to previous approaches, this formulation allows for an independent specification of the sampling (analysis) and approximation (synthesis) spaces. In particular, when both spaces are identical, the theorem provides a simple procedure for obtaining the least squares approximation of a signal. They discuss the properties of this new sampling procedure and present some examples of applications involving bandlimited, and polynomial spline signal representations. They also define a spectral coherence function that measures the “similarity” between the sampling and approximation spaces, and derive a relative performance bound for the comparison with the least squares solution  相似文献   
86.
Generalized Daubechies Wavelet Families   总被引:3,自引:0,他引:3  
We present a generalization of the orthonormal Daubechies wavelets and of their related biorthogonal flavors (Cohen-Daubechies-Feauveau, 9/7). Our fundamental constraint is that the scaling functions should reproduce a predefined set of exponential polynomials. This allows one to tune the corresponding wavelet transform to a specific class of signals, thereby ensuring good approximation and sparsity properties. The main difference with the classical construction of Daubechies is that the multiresolution spaces are derived from scale-dependent generating functions. However, from an algorithmic standpoint, Mallat's fast wavelet transform algorithm can still be applied; the only adaptation consists in using scale-dependent filter banks. Finite support ensures the same computational efficiency as in the classical case. We characterize the scaling and wavelet filters, construct them and show several examples of the associated functions. We prove that these functions are square-integrable and that they converge to their classical counterparts of the corresponding order.  相似文献   
87.
Sum and difference histograms for texture classification   总被引:6,自引:0,他引:6  
The sum and difference of two random variables with same variances are decorrelated and define the principal axes of their associated joint probability function. Therefore, sum and difference histograms are introduced as an alternative to the usual co-occurrence matrices used for texture analysis. Two maximum likelihood texture classifiers are presented depending on the type of object used for texture characterization (sum and difference histograms or some associated global measures). Experimental results indicate that sum and difference histograms used conjointly are nearly as powerful as cooccurrence matrices for texture discrimination. The advantage of the proposed texture analysis method over the conventional spatial gray level dependence method is the decrease in computation time and memory storage.  相似文献   
88.
Microscopy imaging often suffers from limited depth-of-field. However, the specimen can be "optically sectioned" by moving the object along the optical axis. Then different areas appear in focus in different images. Extended depth-of-field is a fusion algorithm that combines those images into one single sharp composite. One promising method is based on the wavelet transform. Here, we show how the wavelet-based image fusion technique can be improved and easily extended to multichannel data. First, we propose the use of complex-valued wavelet bases, which seem to outperform traditional real-valued wavelet transforms. Second, we introduce a way to apply this technique for multichannel images that suppresses artifacts and does not introduce false colors, an important requirement for multichannel optical microscopy imaging. We evaluate our method on simulated image stacks and give results relevant to biological imaging.  相似文献   
89.
Digital analysis and processing of signals inherently relies on the existence of methods for reconstructing a continuous-time signal from a sequence of corrupted discrete-time samples. In this paper, a general formulation of this problem is developed that treats the interpolation problem from ideal, noisy samples, and the deconvolution problem in which the signal is filtered prior to sampling, in a unified way. The signal reconstruction is performed in a shift-invariant subspace spanned by the integer shifts of a generating function, where the expansion coefficients are obtained by processing the noisy samples with a digital correction filter. Several alternative approaches to designing the correction filter are suggested, which differ in their assumptions on the signal and noise. The classical deconvolution solutions (least-squares, Tikhonov, and Wiener) are adapted to our particular situation, and new methods that are optimal in a minimax sense are also proposed. The solutions often have a similar structure and can be computed simply and efficiently by digital filtering. Some concrete examples of reconstruction filters are presented, as well as simple guidelines for selecting the free parameters (e.g., regularization) of the various algorithms.  相似文献   
90.
We introduce a three-dimensional (3-D) parametric active contour algorithm for the shape estimation of DNA molecules from stereo cryo-electron micrographs. We estimate the shape by matching the projections of a 3-D global shape model with the micrographs; we choose the global model as a 3-D filament with a B-spline skeleton and a specified radial profile. The active contour algorithm iteratively updates the B-spline coefficients, which requires us to evaluate the projections and match them with the micrographs at every iteration. Since the evaluation of the projections of the global model is computationally expensive, we propose a fast algorithm based on locally approximating it by elongated blob-like templates. We introduce the concept of projection-steerability and derive a projection-steerable elongated template. Since the two-dimensional projections of such a blob at any 3-D orientation can be expressed as a linear combination of a few basis functions, matching the projections of such a 3-D template involves evaluating a weighted sum of inner products between the basis functions and the micrographs. The weights are simple functions of the 3-D orientation and the inner-products are evaluated efficiently by separable filtering. We choose an internal energy term that penalizes the average curvature magnitude. Since the exact length of the DNA molecule is known a priori, we introduce a constraint energy term that forces the curve to have this specified length. The sum of these energies along with the image energy derived from the matching process is minimized using the conjugate gradients algorithm. We validate the algorithm using real, as well as simulated, data and show that it performs well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号