全文获取类型
收费全文 | 115篇 |
免费 | 0篇 |
专业分类
电工技术 | 2篇 |
机械仪表 | 7篇 |
轻工业 | 1篇 |
无线电 | 88篇 |
一般工业技术 | 4篇 |
冶金工业 | 2篇 |
自动化技术 | 11篇 |
出版年
2017年 | 1篇 |
2012年 | 6篇 |
2011年 | 4篇 |
2010年 | 2篇 |
2009年 | 1篇 |
2008年 | 7篇 |
2007年 | 7篇 |
2006年 | 7篇 |
2005年 | 11篇 |
2004年 | 8篇 |
2003年 | 9篇 |
2002年 | 6篇 |
2001年 | 3篇 |
2000年 | 5篇 |
1999年 | 4篇 |
1998年 | 7篇 |
1997年 | 3篇 |
1996年 | 2篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1993年 | 2篇 |
1992年 | 1篇 |
1991年 | 2篇 |
1989年 | 4篇 |
1987年 | 1篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1984年 | 2篇 |
1983年 | 1篇 |
1958年 | 1篇 |
排序方式: 共有115条查询结果,搜索用时 0 毫秒
81.
Every now and then, a new design of an interpolation kernel appears in the literature. While interesting results have emerged, the traditional design methodology proves laborious and is riddled with very large systems of linear equations that must be solved analytically. We propose to ease this burden by providing an explicit formula that can generate every possible piecewise-polynomial kernel given its degree, its support, its regularity, and its order of approximation. This formula contains a set of coefficients that can be chosen freely and do not interfere with the four main design parameters; it is thus easy to tune the design to achieve any additional constraints that the designer may care for. 相似文献
82.
This note describes a practical improvement in the computational efficiency of the spectral signal-to-noise ratio (SSNR) resolution criterion for correlation-averaged images. The total set of N images is randomly partitioned into ng subsets, each subset is separately averaged, and a reduced form of the SSNR is computed from these average images. In general, larger values of ng achieve lower statistical uncertainty, while smaller values of ng are computationally more expedient. It is shown that, for negatively stained data, a judicious compromise is achieved with 10 less than or equal to ng less than or equal to 20, regardless of how large N may be. 相似文献
83.
Van De Ville D. Blu T. Unser M. Philips W. Lemahieu I. Van de Walle R. 《IEEE transactions on image processing》2004,13(6):758-772
This paper proposes a new family of bivariate, nonseparable splines, called hex-splines, especially designed for hexagonal lattices. The starting point of the construction is the indicator function of the Voronoi cell, which is used to define in a natural way the first-order hex-spline. Higher order hex-splines are obtained by successive convolutions. A mathematical analysis of this new bivariate spline family is presented. In particular, we derive a closed form for a hex-spline of arbitrary order. We also discuss important properties, such as their Fourier transform and the fact they form a Riesz basis. We also highlight the approximation order. For conventional rectangular lattices, hex-splines revert to classical separable tensor-product B-splines. Finally, some prototypical applications and experimental results demonstrate the usefulness of hex-splines for handling hexagonally sampled data. 相似文献
84.
Sum and difference histograms for texture classification 总被引:6,自引:0,他引:6
The sum and difference of two random variables with same variances are decorrelated and define the principal axes of their associated joint probability function. Therefore, sum and difference histograms are introduced as an alternative to the usual co-occurrence matrices used for texture analysis. Two maximum likelihood texture classifiers are presented depending on the type of object used for texture characterization (sum and difference histograms or some associated global measures). Experimental results indicate that sum and difference histograms used conjointly are nearly as powerful as cooccurrence matrices for texture discrimination. The advantage of the proposed texture analysis method over the conventional spatial gray level dependence method is the decrease in computation time and memory storage. 相似文献
85.
A general sampling theory for nonideal acquisition devices 总被引:1,自引:0,他引:1
The authors first describe the general class of approximation spaces generated by translation of a function ψ(x), and provide a full characterization of their basis functions. They then present a general sampling theorem for computing the approximation of signals in these subspaces based on a simple consistency principle. The theory puts no restrictions on the system input which can be an arbitrary finite energy signal; bandlimitedness is not required. In contrast to previous approaches, this formulation allows for an independent specification of the sampling (analysis) and approximation (synthesis) spaces. In particular, when both spaces are identical, the theorem provides a simple procedure for obtaining the least squares approximation of a signal. They discuss the properties of this new sampling procedure and present some examples of applications involving bandlimited, and polynomial spline signal representations. They also define a spectral coherence function that measures the “similarity” between the sampling and approximation spaces, and derive a relative performance bound for the comparison with the least squares solution 相似文献
86.
Forster B Van De Ville D Berent J Sage D Unser M 《Microscopy research and technique》2004,65(1-2):33-42
Microscopy imaging often suffers from limited depth-of-field. However, the specimen can be "optically sectioned" by moving the object along the optical axis. Then different areas appear in focus in different images. Extended depth-of-field is a fusion algorithm that combines those images into one single sharp composite. One promising method is based on the wavelet transform. Here, we show how the wavelet-based image fusion technique can be improved and easily extended to multichannel data. First, we propose the use of complex-valued wavelet bases, which seem to outperform traditional real-valued wavelet transforms. Second, we introduce a way to apply this technique for multichannel images that suppresses artifacts and does not introduce false colors, an important requirement for multichannel optical microscopy imaging. We evaluate our method on simulated image stacks and give results relevant to biological imaging. 相似文献
87.
A new SURE approach to image denoising: interscale orthonormal wavelet thresholding. 总被引:2,自引:0,他引:2
This paper introduces a new approach to orthonormal wavelet image denoising. Instead of postulating a statistical model for the wavelet coefficients, we directly parametrize the denoising process as a sum of elementary nonlinear processes with unknown weights. We then minimize an estimate of the mean square error between the clean image and the denoised one. The key point is that we have at our disposal a very accurate, statistically unbiased, MSE estimate--Stein's unbiased risk estimate--that depends on the noisy image alone, not on the clean one. Like the MSE, this estimate is quadratic in the unknown weights, and its minimization amounts to solving a linear system of equations. The existence of this a priori estimate makes it unnecessary to devise a specific statistical model for the wavelet coefficients. Instead, and contrary to the custom in the literature, these coefficients are not considered random anymore. We describe an interscale orthonormal wavelet thresholding algorithm based on this new approach and show its near-optimal performance--both regarding quality and CPU requirement--by comparing it with the results of three state-of-the-art nonredundant denoising algorithms on a large set of test images. An interesting fallout of this study is the development of a new, group-delay-based, parent-child prediction in a wavelet dyadic tree. 相似文献
88.
A review of wavelets in biomedical applications 总被引:26,自引:0,他引:26
Unser M. Aldroubi A. 《Proceedings of the IEEE. Institute of Electrical and Electronics Engineers》1996,84(4):626-638
We present an overview of the various uses of the wavelet transform (WT) in medicine and biology. We start by describing the wavelet properties that are the most important for biomedical applications. In particular we provide an interpretation of the the continuous wavelet transform (CWT) as a prewhitening multiscale matched filter. We also briefly indicate the analogy between the WT and some of the the biological processing that occurs in the early components of the auditory and visual system. We then review the uses of the WT for the analysis of 1-D physiological signals obtained by phonocardiography, electrocardiography (ECG), mid electroencephalography (EEG), including evoked response potentials. Next, we provide a survey of wavelet developments in medical imaging. These include biomedical image processing algorithms (e.g., noise reduction, image enhancement, and detection of microcalcifications in mammograms), image reconstruction and acquisition schemes (tomography, and magnetic resonance imaging (MRI)), and multiresolution methods for the registration and statistical analysis of functional images of the brain (positron emission tomography (PET) and functional MRI (fMRI)). In each case, we provide the reader with same general background information and a brief explanation of how the methods work 相似文献
89.
By interpreting the Green-function reproduction property of exponential splines in signal processing terms, we uncover a fundamental relation that connects the impulse responses of allpole analog filters to their discrete counterparts. The link is that the latter are the B-spline coefficients of the former (which happen to be exponential splines). Motivated by this observation, we introduce an extended family of cardinal splines-the generalized E-splines-to generalize the concept for all convolution operators with rational transfer functions. We construct the corresponding compactly supported B-spline basis functions, which are characterized by their poles and zeros, thereby establishing an interesting connection with analog filter design techniques. We investigate the properties of these new B-splines and present the corresponding signal processing calculus, which allows us to perform continuous-time operations, such as convolution, differential operators, and modulation, by simple application of the discrete version of these operators in the B-spline domain. In particular, we show how the formalism can be used to obtain exact, discrete implementations of analog filters. Finally, we apply our results to the design of hybrid signal processing systems that rely on digital filtering to compensate for the nonideal characteristics of real-world analog-to-digital (A-to-D) and D-to-A conversion systems. 相似文献
90.
Fast parametric elastic image registration 总被引:19,自引:0,他引:19
We present an algorithm for fast elastic multidimensional intensity-based image registration with a parametric model of the deformation. It is fully automatic in its default mode of operation. In the case of hard real-world problems, it is capable of accepting expert hints in the form of soft landmark constraints. Much fewer landmarks are needed and the results are far superior compared to pure landmark registration. Particular attention has been paid to the factors influencing the speed of this algorithm. The B-spline deformation model is shown to be computationally more efficient than other alternatives. The algorithm has been successfully used for several two-dimensional (2-D) and three-dimensional (3-D) registration tasks in the medical domain, involving MRI, SPECT, CT, and ultrasound image modalities. We also present experiments in a controlled environment, permitting an exact evaluation of the registration accuracy. Test deformations are generated automatically using a random hierarchical fractional wavelet-based generator. 相似文献