首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   6篇
电工技术   4篇
综合类   3篇
化学工业   121篇
金属工艺   1篇
机械仪表   6篇
建筑科学   1篇
能源动力   19篇
轻工业   12篇
水利工程   1篇
无线电   4篇
一般工业技术   32篇
冶金工业   11篇
原子能技术   1篇
自动化技术   23篇
  2023年   4篇
  2022年   3篇
  2021年   14篇
  2020年   7篇
  2019年   2篇
  2018年   5篇
  2017年   9篇
  2016年   4篇
  2015年   6篇
  2014年   10篇
  2013年   22篇
  2012年   18篇
  2011年   14篇
  2010年   16篇
  2009年   5篇
  2008年   11篇
  2007年   6篇
  2006年   9篇
  2005年   12篇
  2004年   6篇
  2003年   4篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   9篇
  1997年   2篇
  1996年   4篇
  1995年   4篇
  1994年   6篇
  1993年   4篇
  1989年   1篇
  1988年   3篇
  1985年   2篇
  1983年   2篇
  1982年   1篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有239条查询结果,搜索用时 15 毫秒
231.
232.
This paper considers the extended Blasius and Sakiadis problems in nanofluids, by considering a uniform free stream parallel to a fixed or moving flat plate, which has more practical significance. It is assumed that the plate moves in the same or opposite direction to the free stream. The resulting system of nonlinear ordinary differential equations is solved numerically for three types of nanoparticles, namely copper (Cu), alumina (Al2O3), and titania (TiO2) in the water based fluid with Prandtl number Pr = 6.2. The effect of the solid volume fraction parameter φ of the nanofluids on the heat transfer characteristics is investigated. The results indicate that dual solutions exist when the plate and the free stream move in the opposite directions.  相似文献   
233.
The steady stagnation point flow and heat transfer over a shrinking sheet in a porous medium is studied. A similarity transformation is used to reduce the governing system of partial differential equations to a set of nonlinear ordinary differential equations which are then solved numerically using the Keller-box method. The behavior of the flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented for different values of the governing parameters. The results indicate that dual solutions exist for the shrinking case.  相似文献   
234.
235.
An attempt to resolve the difficulties normally faced in preparing PVC-dominant PVC/ENR blends with the Brabender plasticorder is discussed. As expected, it was found that the mechanical properties of PVC/ENR blends are greatly influenced by the mixing parameters, which are further reinforced with evidence from both dynamic mechanical analysis (DMA) and morphological studies. Both techniques showed the attainment of compatible 50/50/PVC/ENR blends, the former a single glass transition temperature (Tg) and the latter a single-phase system, albeit their inherent properties are dependent on the blending parameters. By utilizing the correlation between mixing temperature and rotor speed derived, good PVC/ENR blends can be easily procured. © 1993 John Wiley & Sons, Inc.  相似文献   
236.
The objective of this research was to study the effects of polytetrafluoroethylene (PTFE) as a solid lubricant on the mechanical, electrical, and tribological properties of carbon fiber (CF)-reinforced polycarbonate (PC) composites. Samples were prepared by means of single-screw extrusion and injection molding processes. The mechanical tests included tensile, flexural, and failing weight impact tests, while the electrical tests consisted of surface and volume resistivity tests. The tribological testing was conducted under dry sliding conditions using pin-on-disk configuration. The results showed that the addition of CF managed to significantly reduce the electrical resistivity as the CF loading approached 10–15 wt%. The addition of PTFE managed to reduce the resistivity of the composite, that is, from 4.51 to 0.53 × 10 (Ωcm). The incorporation of 15 wt%. CF resulted with an increase of 45% in tensile strength and 51.5% in flexural strength, while the addition of PTFE had a negative impact on both properties. It was shown that PTFE was able to reduce the friction coefficient, μ and wear rate, K up to 0.257 and 6.35 × 106 (mm3/Nm), respectively, which can be attributed to the excellent abilities of PTFE to form transfer film. The composite consisting of 15 wt% CF and 10 wt%. PTFE showed highest improvement in term of electrical resistivity, and is deemed the most suitable composition for this study. Scanning electron microscopy was also carried out to further elucidate the fracture and wear mechanism of the PC/CF/PTFE composites.  相似文献   
237.
238.
A study of hygrothermal aging in terms of the kinetics of moisture absorption by nylon 6,6 and its carbon fiber reinforced composites has been carried out. The single free phase model of absorption has been applied to the kinetic data and thereafter the values of diffusivity have been evaluted. The diffusivity was found to be dependent on the conditioning temperatures and the volume fraction of fibers. Dynamic mechanical properties of unaged and aged samples were studied using a free resonance torsion pendulum which covers a temperature range of 350°C. Incorporation of carbon fibers has led to an increase in structural rigidity of the nylon 6,6 matrix especially at higher temperatures. This was reflected by the sharp increase in the relative shear modulus as the glass transition temperature of nylon 6,6 is appoached. Absorbed moisture was observed to plasticize the polymer matrix and decreased the temperatures of all the transitions. For instance, the α-transition was shifted by almost 95°C. The intensities of the transition peaks of both unaged and aged samples were found to decrease with fiber volume fraction. Increasing the conditioning temperatures has resulted in a reduction of the shear storage modulus and this effect was found to be more pronounced in the reinforced nylon 6,6. This has been attributed to the increase in the extent of degradation at the fiber-matrix interface.  相似文献   
239.
The fracture response of injection molded short glass fiber (GF) reinforced and rubber-toughened poly(butylene terephthalate) (PBT) composites has been characterized by the fracture toughness (Kc) and energy (Gc), measured on static-loaded compact tension (CT) specimens. The related failure of the composites with 30 wt% GF reinforcement in as-received (AR), hygrothermally aged (HA) and re-dried (RD) states, respectively, was studied by acoustic emission (AE) and fractography. Tougheners were functionalized ethylene/acrylate (EAF), crosslinked acrylate (XAR) and core-shell type (CSR) rubbers, at 20 wt% in the composites. It was shown that both Kc and Gc decrease with hygrothermal aging at 90°C, and their values cannot be restored by subsequent drying. This is attributed to severe hydrolysis degradation of the PBT matrix. Deterioration in the fracture parameters was affected by the composition of the rubbery toughener: The toughness retention by EAF was superior to the other modifiers. The difference in the failure mode of the GF-PBT composites before and after hygrothermal aging was revealed by viewing the fracture surface of the CT-specimens in scanning electron microscope (SEM). Based on the fractographic results, changes in the AE amplitude envelopes are interpreted and discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号