首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55332篇
  免费   5908篇
  国内免费   2674篇
电工技术   3634篇
技术理论   6篇
综合类   3704篇
化学工业   8860篇
金属工艺   3360篇
机械仪表   3887篇
建筑科学   4253篇
矿业工程   1806篇
能源动力   1748篇
轻工业   3942篇
水利工程   1183篇
石油天然气   2907篇
武器工业   555篇
无线电   6384篇
一般工业技术   6643篇
冶金工业   2667篇
原子能技术   858篇
自动化技术   7517篇
  2024年   663篇
  2023年   1072篇
  2022年   1794篇
  2021年   2413篇
  2020年   1855篇
  2019年   1616篇
  2018年   1826篇
  2017年   1930篇
  2016年   1832篇
  2015年   2388篇
  2014年   2953篇
  2013年   3418篇
  2012年   3931篇
  2011年   4115篇
  2010年   3589篇
  2009年   3450篇
  2008年   3255篇
  2007年   3049篇
  2006年   2880篇
  2005年   2424篇
  2004年   1824篇
  2003年   1653篇
  2002年   1724篇
  2001年   1517篇
  2000年   1211篇
  1999年   1174篇
  1998年   804篇
  1997年   640篇
  1996年   615篇
  1995年   546篇
  1994年   378篇
  1993年   328篇
  1992年   257篇
  1991年   180篇
  1990年   150篇
  1989年   98篇
  1988年   106篇
  1987年   49篇
  1986年   63篇
  1985年   28篇
  1984年   25篇
  1983年   17篇
  1982年   14篇
  1981年   7篇
  1980年   6篇
  1979年   10篇
  1977年   7篇
  1975年   5篇
  1970年   6篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
932.
洛克希德·马丁公司(以下简称"洛马")是美国一家拥有百年历史的国防承包商,在百年发展历程中,洛马以美国国家安全需求为牵引,逐渐成长为世界最大军工集团.伴随网络时代的来临和新安全威胁的涌现,洛马加大网络空间作战技术的研发力度和资金投入,为美国加强网络国防能力建设铸剑护航.研究以洛马网络军工产业发展为脉络,对其网络安全全谱...  相似文献   
933.
Proton batteries have been considered as an innovative energy storage technology owing to their high safety and cost-effectiveness. However, the development of fast-charging proton batteries with high energy/power density is greatly limited by feasible material selection. Here, the pre-protonated vanadium hexacyanoferrate (H-VHCF) is developed as a proton cathode material to alleviate the capacity loss of proton-free electrode materials during electrochemical tests. The pre-protonation process realizes fast and long-distance transport of protons by shortening diffusion path and reducing migration barriers. Benefitting from the enhanced hydrogen bonding network combined with dual redox reactions of V and Fe in protonated H-VHCF cathode, a high energy density of 74 Wh kg−1 at 1.1 kW kg−1, and a maximum power density of 54 kW kg−1 at 65 Wh kg−1 is achieved for the asymmetric proton batteries coupling with MoO3/MXene anode. Proton transport and double oxidation-reduction center are verified by theoretical calculations and ex situ experimental measurements. Considering the anti-freezing availability of proton batteries, 82.5% of its initial capacity is maintained after 10000 cycles under −40 °C at 0.5 A g−1. As a proof-of-concept, flexible device fabricated by optimized electrodes and hydrogel electrolytes can power up a light-emitting diode even under a bent state.  相似文献   
934.
935.
Nonvolatile organic photonic transistor (OPT) memories have attracted widespread attention due to their nondestructive readout, remote controllability, and robust tunability. Developing electrets with similar molecular structures but different memory behaviors and light-responsive features is crucial for light-wavelength-modulated data encryption. However, reported OPT memories have yet to meet this challenge. Here a new electret molecule (“H-PDI”) is developed via reconfiguring the linear perylene diimide molecule (“L-PDI”) to a helical shape. Respectively incorporating H-PDI and L-PDI into the floating gate layer results to H-PDI OPT and L-PDI OPT. Attributing to their remarkably different electronic structures and energy bandgaps, H-PDI OPT and L-PDI OPT preferably respond to 405 and 532 nm light irradiation, respectively. Upon electrical programming, data can be written and stored in both memories with good retention features and a high “1”/“0” state current ratio over 105, though the data can only be erased by light with correct wavelengths, rather than the electrical field. Moreover, data stored in a memory array consisting of both H-PDI OPT and L-PDI OPT can only be read out by correct inputs, and wrong inputs will lead to highly deceptive outputs. This study provides a general design strategy of OPT for advanced data encryption and protection.  相似文献   
936.
Polymer blends based solid polymer electrolytes (SPEs), combining the advantages of multiple polymers, are promising for the utilization of 5 V-class cathodes (e.g., LiCoMnO4 (LCMO)) with enhanced safety. However, severe macro-phase separation with defects and voids in polymer blends restrict the electrochemical stability and ionic migration of SPEs. Herein, inorganic compatibilizer polyacrylonitrile grafted MXene (MXene-g-PAN) is exploited to improve the miscibility of the poly(vinylidene fluoride-co-hexafluoropropylene) (PVHF)/PAN blends and suppress the consolidation of phase particles. The resulting SPE exhibits a high anodic stability with an ionic conductivity of 2.17 × 10−4 S cm−1, enabling a stable and reversible Li platting/stripping (over 2500 h). The fabricated solid Li‖LCMO cell delivers a 5.1 V discharge voltage with a decent capacity (131 mAh g−1) and cycling performance. Subsequently, the solid all-in-one graphite‖LCMO battery is also constructed to extend the application of MXene based SPEs in flexible batteries. Benefiting from the interface-less design, outstanding mechanical flexibility and stability is achieved in the battery, which can endure various deformations with a low-capacity loss (< ≈10%). This study signifies a significant development on solid flexible lithium ion batteries with enhanced performance, stability, and reliability by investigating the miscibility of polymer blends, benefiting for the design of high-performance SPEs.  相似文献   
937.
As a less O2-dependent photodynamic therapy (PDT), type I PDT is an effective approach to overcome the hypoxia-induced low efficiency against solid tumors. However, the commonly used metal-involved agents suffer from the long-term biosafety concern. Herein, a metal-free type I photosensitizer, N-doped carbon dots/mesoporous silica nanoparticles (NCDs/MSN, ≈40 nm) nanohybrid with peroxidase (POD)-like activity for synergistic PDT and enzyme-activity treatment, is developed on gram scale via a facile one-pot strategy through mixing carbon source and silica precursor with the assistance of template. Benefiting from the narrow bandgap (1.92 eV) and good charge separation capacity of NCDs/MSN, upon 640 nm light irradiation, the excited electrons in the conduction band can effectively generate O2•− by reduction of dissolved O2 via a one-electron transfer process even under hypoxic conditions, inducing apoptosis of tumor cells. Moreover, the photoinduced O2•− can partially transform into more toxic OH through a two-electron reduction. Moreover, the POD-like activity of NCDs/MSN can catalyze the endogenous H2O2 to OH in the tumor microenvironment, further synergistically ablating 4T1 tumor cells. Therefore, a mass production way to synthesize a novel metal-free type I photosensitizer with enzyme-mimic activity for synergistic treatment of hypoxic tumors is provided, which exhibits promising clinical translation prospects.  相似文献   
938.
Despite the rapid developments are achieved for perovskite solar cells (PSCs), the existence of various defects in the devices still limits the further enhancement of the power conversion efficiency (PCE) and the long-term stability of devices. Herein, the efficient organic potassium salt (OPS) of para-halogenated phenyl trifluoroborates is presented as the precursor additives to improve the performance of PSCs. Studies have shown that the 4-chlorophenyltrifluoroborate potassium salt (4-ClPTFBK) exhibits the most effective interaction with the perovskite lattice. Strong coordination between  BF3/halogen in anion and uncoordinated Pb2+/halide vacancies, along with the hydrogen bond between F in  BF3 and H in FA+ are observed. Thus, due to the synergistic contribution of the potassium and anionic groups, the high-quality perovskite film with large grain size and low defect density is achieved. As a result, the optimal devices show an enhanced efficiency of 24.50%, much higher than that of the control device (22.63%). Furthermore, the unencapsulated devices present remarkable thermal and long-term stability, maintaining 86% of the initial PCE after thermal test at 80 °C for 1000 h and 95% after storage in the air for 2460 h.  相似文献   
939.
Thermo-responsive dielectric materials are in urgent demand owing to the rapid development of smart electronic/electrical systems. Although different types and structures of thermally responsive dielectric materials have been continuously reported, their dielectric response behaviors all originate from thermodynamic phase transitions. Herein, it is demonstrated that structural relaxation in poly(vinylidene fluoride) (PVDF), a non-thermodynamic phase transition, can induce a significant thermal dielectric pulse at room temperature. The dielectric pulse strength of up to 6.3 × 105 at 20 Hz, with a dielectric pulsing temperature of 24 °C, is achieved from polyethylene glycol (PEG)-PVDF coaxial nanofibrous films (PVDF@PEG), fabricated via a continuous blow spinning method. Moreover, the films exhibit excellent flexibility, adjustable strength and toughness, switchable hydrophilicity/hydrophobicity, and effective thermal management capability. The relaxation-induced dielectric pulsing effect, outstanding multifunctionality, and simple preparation combine to promote further scalability and prospects of PVDF@PEG. In particular, the work contributes to the discovery of the relaxation-induced dielectric response mechanism, which provides a new strategy for the generation of thermo-responsive dielectric materials.  相似文献   
940.
Alloying-type metal sulfides with high theoretical capacities are promising anodes for sodium-ion batteries, but suffer from sluggish sodiation kinetics and huge volume expansion. Introducing intercalative motifs into alloying-type metal sulfides is an efficient strategy to solve the above issues. Herein, robust intercalative In S motifs are grafted to high-capacity layered Bi2S3 to form a cation-disordered (BiIn)2S3, synergistically realizing high-rate and large-capacity sodium storage. The In S motif with strong bonding serves as a space-confinement unit to buffer the volume expansion, maintaining superior structural stability. Moreover, the grafted high-metallicity Indium increases the bonding covalency of Bi S, realizing controllable reconstruction of Bi S bond during cycling to effectively prevent the migration and aggregation of atomic Bi. The novel (BiIn)2S3 anode delivers a high capacity of 537 mAh g−1 at 0.4 C and a superior high-rate stability of 247 mAh g−1 at 40 C over 10000 cycles. Further in situ and ex situ characterizations reveal the in-depth reaction mechanism and the breakage and formation of reversible Bi S bonds. The proposed space confinement and bonding covalency enhancement strategy via grafting intercalative motifs can be conducive to developing novel high-rate and large-capacity anodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号