首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4949篇
  免费   492篇
  国内免费   13篇
电工技术   47篇
综合类   2篇
化学工业   1305篇
金属工艺   138篇
机械仪表   240篇
建筑科学   148篇
矿业工程   10篇
能源动力   165篇
轻工业   596篇
水利工程   32篇
石油天然气   11篇
无线电   669篇
一般工业技术   1047篇
冶金工业   243篇
原子能技术   43篇
自动化技术   758篇
  2024年   13篇
  2023年   73篇
  2022年   115篇
  2021年   211篇
  2020年   174篇
  2019年   191篇
  2018年   247篇
  2017年   250篇
  2016年   291篇
  2015年   208篇
  2014年   284篇
  2013年   383篇
  2012年   366篇
  2011年   421篇
  2010年   306篇
  2009年   303篇
  2008年   283篇
  2007年   194篇
  2006年   140篇
  2005年   132篇
  2004年   115篇
  2003年   103篇
  2002年   97篇
  2001年   69篇
  2000年   55篇
  1999年   58篇
  1998年   63篇
  1997年   48篇
  1996年   42篇
  1995年   24篇
  1994年   26篇
  1993年   13篇
  1992年   21篇
  1991年   20篇
  1990年   13篇
  1989年   10篇
  1988年   9篇
  1987年   12篇
  1985年   9篇
  1984年   10篇
  1983年   6篇
  1981年   4篇
  1980年   5篇
  1979年   5篇
  1977年   7篇
  1976年   5篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1963年   2篇
排序方式: 共有5454条查询结果,搜索用时 15 毫秒
21.
Manganese oxide nanocrystals are combined with aluminum oxide nanocrystals to improve their crystallinity via calcination without a significant increase of crystal size. A nanocomposite, consisting of two metal oxides, can be synthesized by the reaction between permanganate anions and aluminum oxyhydroxide keggin cations. The as‐prepared manganese oxide–aluminum oxide nanocomposite is X‐ray amorphous whereas heat‐treatment gives rise to the crystallization of an α‐MnO2 phase at 600 °C and Mn3O4/Mn2O3 and γ‐Al2O3 phases at 800 °C. Electron microscopy and N2 adsorption‐desorption‐isotherm analysis clearly demonstrate that the as‐prepared nanocomposite is composed of a porous assembly of monodisperse primary particles with a size of ~20 nm and a surface area of >410 m2 g?1. Of particular interest is that the small particle size of the as‐prepared nanocomposite is well‐maintained up to 600 °C, a result of the prevention of the growth of manganate grains through nanoscale mixing with alumina grains. The calcined nanocomposite shows very‐high catalytic activity for the oxidation of cyclohexene with an extremely high conversion efficiency of >95% within 15 min. The present results show that the improvement of the crystallinity without significant crystal growth is very crucial for optimizing the catalytic activity of manganese oxide nanocrystals.  相似文献   
22.
A new capacitive‐type humidity sensor is proposed using novel materials and fabrication process for practical applications in sensitive environments and cost‐effective functional devices that require ultrasensing performances. Metal halide perovskites (CsPbBr3 and CsPb2Br5) combined with diverse ceramics (Al2O3, TiO2, and BaTiO3) are selected as sensing materials for the first time, and nanocomposite powders are deposited by aerosol deposition (AD) process. A state‐of‐the‐art CsPb2Br5/BaTiO3 nanocomposite humidity sensor prepared by AD process exhibits a significant increase in humidity sensing compared with CsPbBr3/Al2O3 and CsPbBr3/TiO2 sensors. An outstanding humidity sensitivity (21426 pF RH%?1) with superior linearity (0.991), fast response/recovery time (5 s), low hysteresis of 1.7%, and excellent stability in a wide range of relative humidity is obtained owing to a highly porous structure, effective charge separation, and water‐resistant characteristics of CsPb2Br5. Notably, this unprecedented result is obtained via a simple one‐step AD process within a few minutes at room temperature without any auxiliary treatment. The synergetic combination of AD technique and perovskite‐based nanocomposite can be potentially applied toward the development of multifunctional sensing devices.  相似文献   
23.
In this letter, we will evaluate the performance degradation of a 40 km high‐speed (40 Gb/s) optical system, induced by optical fiber variations of the chromatic dispersion induced by temperature changes. The chromatic dispersion temperature sensitivity will be estimated based on the signal quality parameters.  相似文献   
24.
This letter presents a small‐sized, high‐power single‐pole double‐throw (SPDT) switch with defected ground structure (DGS) for wireless broadband Internet application. To reduce the circuit size by using a slow‐wave characteristic, the DGS is used for the quarter‐wave (°/4) transmission line of the switch. To secure a high degree of isolation, the switch with DGS is composed of shunt‐connected PIN diodes. It shows an insertion loss of 0.8 dB, an isolation of 50 dB or more, and power capability of at least 50 W at 2.3 GHz. The switch shows very similar performance to the conventional shunt‐type switch, but the circuit size is reduced by about 50% simply with the use of DGS patterns.  相似文献   
25.
We investigated the impact of charge injection and metal gates (Al and Pt) on the data retention characteristics of metal–alumina–nitride–oxide–silicon (MANOS) devices for NAND flash memory application. Through the theoretical and experimental results, the highly injected charge (ΔVTH) could cause the band bending of Al2O3, which reduced the tunneling distance across Al2O3. Thus, the dominant charge loss path is not only toward SiO2 but also toward Al2O3 direction. Compared to low-metal work function (ФM), ONA stack with high-ФM showed better data retention characteristics, even if ΔVTH is high. This could be explained by Fermi level alignment for different ФM, which results in the reduction of electric field across the Al2O3 compensated by the ΔФM (ФPt ? ФAl).  相似文献   
26.
Developing complex supramolecular biomaterials through highly dynamic and reversible noncovalent interactions has attracted great attention from the scientific community aiming key biomedical and biotechnological applications, including tissue engineering, regenerative medicine, or drug delivery. In this study, the authors report the fabrication of hybrid supramolecular multilayered biomaterials, comprising high‐molecular‐weight biopolymers and oppositely charged low‐molecular‐weight peptide amphiphiles (PAs), through combination of self‐assembly and electrostatically driven layer‐by‐layer (LbL) assembly approach. Alginate, an anionic polysaccharide, is used to trigger the self‐assembling capability of positively charged PA and formation of 1D nanofiber networks. The LbL technology is further used to fabricate supramolecular multilayered biomaterials by repeating the alternate deposition of both molecules. The fabrication process is monitored by quartz crystal microbalance, revealing that both materials can be successfully combined to conceive stable supramolecular systems. The morphological properties of the systems are studied by advanced microscopy techniques, revealing the nanostructured dimensions and 1D nanofibrous network of the assembly formed by the two molecules. Enhanced C2C12 cell adhesion, proliferation, and differentiation are observed on nanostructures having PA as outermost layer. Such supramolecular biomaterials demonstrate to be innovative matrices for cell culture and hold great potential to be used in the near future as promising biomimetic supramolecular nanoplatforms for practical applications.  相似文献   
27.
Potassium sulfamate (PS) is an efficient starting material for the nitration reaction used in the synthesis of ammonium dinitramide (ADN), which is an environmentally friendly high-energy oxidizer for propellants that does not release chlorine-based compounds. PS is a core structure to form dinitramide, -N(NO2)2, by taking NO2? from nitric acid. In this work, five test batches of PS were prepared using a few solvents including ethanol, methanol, acetone, isopropanol, and their mixtures. The lab-made PSs matched well with the commercial PS in terms of the chemical structure. The use of acetone led to a high recovery of PS up to 97 w/w% and ultimately contributed to the formation of high-purity and (99.2%) and a high yield (57.3%) that are greater than those for commercial PS (87.3% purity and 31.3% yield). Therefore, we proved that the crystallinity and homogeneity of PS influenced the properties of ADN and the synthesis efficiency.  相似文献   
28.
With the impressive record power conversion efficiency (PCE) of perovskite solar cells exceeding 23%, research focus now shifts onto issues closely related to commercialization. One of the critical hurdles is to minimize the cell‐to‐module PCE loss while the device is being developed on a large scale. Since a solution‐based spin‐coating process is limited to scalability, establishment of a scalable deposition process of perovskite layers is a prerequisite for large‐area perovskite solar modules. Herein, this paper reports on the recent progress of large‐area perovskite solar cells. A deeper understanding of the crystallization of perovskite films is indeed essential for large‐area perovskite film formation. Various large‐area coating methods are proposed including blade, slot‐die, evaporation, and post‐treatment, where blade‐coating and gas post‐treatment have so far demonstrated better PCEs for an area larger than 10 cm2. However, PCE loss rate is estimated to be 1.4 × 10?2% cm?2, which is 82 and 3.5 times higher than crystalline Si (1.7 × 10?4% cm?2) and thin film technologies (≈4 × 10?3% cm?2) respectively. Therefore, minimizing PCE loss upon scaling‐up is expected to lead to PCE over 20% in case of cell efficiency of >23%.  相似文献   
29.
This letter proposes an open‐ended waveguide antenna with a single split‐ring resonator. In contrast to the waveguide antennas incorporating multiple rings reported in a previous study, which exhibited narrow bandwidth, the proposed antenna uses only one ring to achieve broader bandwidth while keeping the aperture small. A single ring has a relatively low quality factor compared to multiple rings. The simulated and measured fractional bandwidth was 4.13% and 4.03%, respectively, which is much broader than the fractional bandwidth of about 1% demonstrated in a previous study. This simple technique can be used in many applications that require small apertures including near‐field probes and array elements.  相似文献   
30.
Coexistence analysis is extremely important in examining the possibility for spectrum sharing between orthogonal frequency‐division multiplexing (OFDM)‐based international mobile telecommunications (IMT)‐Advanced and other wireless services. In this letter, a new closed form method is derived based on power spectral density analysis in order to analyze the coexistence of OFDM‐based IMT‐Advanced systems and broadcasting frequency modulation (FM) systems. The proposed method evaluates more exact interference power of IMT‐Advanced systems in FM broadcasting systems than the advanced minimum coupling loss (A‐MCL) method. Numerical results show that the interference power is 1.3 dB and 3 dB less than that obtained using the A‐MCL method at cochannel and adjacent channel, respectively. This reduces the minimum separation distance between the two systems, which eventually saves spectrum resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号