首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   464428篇
  免费   35117篇
  国内免费   17818篇
电工技术   25690篇
技术理论   43篇
综合类   28443篇
化学工业   77905篇
金属工艺   25676篇
机械仪表   28884篇
建筑科学   36563篇
矿业工程   13619篇
能源动力   12996篇
轻工业   28531篇
水利工程   7957篇
石油天然气   28083篇
武器工业   3444篇
无线电   54348篇
一般工业技术   55554篇
冶金工业   24962篇
原子能技术   4754篇
自动化技术   59911篇
  2024年   1490篇
  2023年   6469篇
  2022年   11895篇
  2021年   17095篇
  2020年   12553篇
  2019年   10490篇
  2018年   12112篇
  2017年   13897篇
  2016年   12194篇
  2015年   16969篇
  2014年   21604篇
  2013年   26776篇
  2012年   28697篇
  2011年   31624篇
  2010年   27496篇
  2009年   26544篇
  2008年   25973篇
  2007年   25155篇
  2006年   26033篇
  2005年   22796篇
  2004年   15091篇
  2003年   13060篇
  2002年   12137篇
  2001年   10946篇
  2000年   11496篇
  1999年   13293篇
  1998年   11395篇
  1997年   9701篇
  1996年   8825篇
  1995年   7386篇
  1994年   6004篇
  1993年   4517篇
  1992年   3588篇
  1991年   2723篇
  1990年   2083篇
  1989年   1673篇
  1988年   1365篇
  1987年   952篇
  1986年   728篇
  1985年   541篇
  1984年   361篇
  1983年   258篇
  1982年   267篇
  1981年   230篇
  1980年   178篇
  1979年   110篇
  1978年   85篇
  1977年   96篇
  1976年   136篇
  1973年   41篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
52.
Ti-based amorphous metallic glasses have excellent mechanical, physical, and chemical properties, which is an important development direction and research hotspot of metal composite reinforcement. As a stable, simple, efficient, and large-scale preparation technology of metallic powders, the gas atomization process provides an effective way of preparing amorphous metallic glasses. In this study, the controllable fabrication of a Ti-based amorphous powder, with high efficiency, has been realized by using gas atomization. The scanning electron microscope, energy-dispersive spectrometer, and X-ray diffraction are used to analyze surface morphology, element distribution, and phase structure, respectively. A microhardness tester is used to measure the mechanical property. An electrochemical workstation is used to characterize corrosion behavior. The results show that as-prepared microparticles are more uniform and exhibit good amorphous characteristics. The mechanical test shows that the hardness of amorphous powder is significantly increased as compared with that before preparation, which has the prospect of being an important part of engineering reinforced materials. Further electrochemical measurement shows that the corrosion resistance of the as-prepared sample is also significantly improved. This study has laid a solid foundation for expanding applications of Ti-based metallic glasses, especially in heavy-duty and corrosive domains.  相似文献   
53.
Zhang  Qi  Wang  Yujing  Zhang  Xueling  Song  Jun  Li  Yinlei  Wu  Xuehong  Yuan  Kunjie 《Journal of Materials Science》2022,57(14):7208-7224
Journal of Materials Science - Form-stable composite phase change materials (C-PCMs) prepared by microencapsulation method and porous matrix adsorption method need for compression molding after...  相似文献   
54.
55.
朱宏  张蔚翔  郭成英 《中州煤炭》2021,(11):239-243
为应对电力系统安全分析中的停机问题,基于概率法的方式,将常用的确定停机计算与加入了概率法的概率停机进行比较,研究了二者的区别与其在长期投资方向的不同。在进行电力系统停机分析时,通常会分别从确定停机与概率停机的角度出发,对其应急状态下的潮流进行计算。但前者的方法可能导致极低概率的停机事件被忽略,进而影响长期的资金投资。通过加入概率法的计算,使得对单个停机事件的判定由其具体的频率来确定,增加了系统运行的稳定性。  相似文献   
56.
In this study, La was doped into the lithium layer of Li-rich cathode material and formed a layered-spinel hetero-structure. The morphology, crystal structure, element valence and kinetics of lithium ion migration were studied by field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The La doped lithium-rich cathode material exhibited similar initial discharge capacity of 262.8 mAh g?1 at 0.1 C compared with the undoped material, but the discharge capacity retention rate can be obviously improved to 90% after 50 cycles at 1.0 C. Besides that, much better rate capability and Li+ diffusion coefficient were observed. The results revealed that La doping not only stabilized the material structure and reduced the Li/Ni mixing degree, but also induced the generation of spinel phase to provide three-dimensional diffusion channels for lithium ion migration. Moreover, the porous structure of the doped samples also contributed to the remarkable excellent electrochemical performance. All of these factors combined to significantly improve the electrochemical performance of the material.  相似文献   
57.
With liquefied natural gas becoming increasingly prevalent as a flexible source of energy, the design and optimization of industrial refrigeration cycles becomes even more important. In this article, we propose an integrated surrogate modeling and optimization framework to model and optimize the complex CryoMan Cascade refrigeration cycle. Dimensionality reduction techniques are used to reduce the large number of process decision variables which are subsequently supplied to an array of Gaussian processes, modeling both the process objective as well as feasibility constraints. Through iterative resampling of the rigorous model, this data-driven surrogate is continually refined and subsequently optimized. This approach was not only able to improve on the results of directly optimizing the process flow sheet but also located the set of optimal operating conditions in only 2 h as opposed to the original 3 weeks, facilitating its use in the operational optimization and enhanced process design of large-scale industrial chemical systems.  相似文献   
58.
Titanium and boron are simultaneously introduced into LiNi0.8Co0.1Mn0.1O2 to improve the structural stability and electrochemical performance of the material. X-ray diffraction studies reveal that Ti4+ ion replaces Li+ ion and reduces the cation mixing; B3+ ion enters the tetrahedron of the transition metal layers and enlarges the distance of the [LiO6] layers. The co-doped sample has spherical secondary particles with elongated and enlarged primary particles, in which Ti and B elements distribute uniformly. Electrochemical studies reveal the co-doped sample has improved rate performance (183.1 mAh·g-1 at 1 C and 155.5 mAh·g-1 at 10 C) and cycle stability (capacity retention of 94.7% after 100 cycles at 1 C). EIS and CV disclose that Ti and B co-doping reduces charge transfer impedance and suppresses phase change of LiNi0.8Co0.1Mn0.1O2.  相似文献   
59.
A novel CdS/CaFe2O4 (CS/CFO) heterogeneous p-n junction was created by thermal deposition of CaFe2O4 nanoparticles on CdS rods. The CS/CFO hetero-structured photocatalysts exhibited increasingly efficient visible light harvesting compared to the bare CdS. The CS/CFO composites also presented higher photocurrent and slower decay of photoluminescence, suggesting a better separation of the photo-generated electrons and holes. The photocatalytic H2 evolution quantity on the optimized CS/CFO composite from water in the presence of ethanol was up to 2200 μmol after 3-h visible light illumination, which is more than twice that of the pristine CdS. The chemical interaction between CdS and CaFe2O4 was confirmed by the shifts in the XPS peaks, which made it possible for the charge carriers to transfer across the p-n junction interface. This research highlights the importance of forming an interfacial p-n heterojunction between two semiconductors for efficient charge separation and improved photocatalytic performance.  相似文献   
60.
Developing high-performance visible-to-UV photon upconversion systems based on triplet–triplet annihilation photon upconversion (TTA-UC) is highly desired, as it provides a potential approach for UV light-induced photosynthesis and photocatalysis. However, the quantum yield and spectral range of visible-to-UV TTA-UC based on nanocrystals (NCs) are still far from satisfactory. Here, three different sized CdS NCs are systematically investigated with triplet energy transfer to four mediators and four annihilators, thus substantially expanding the available materials for visible-to-UV TTA-UC. By improving the quality of CdS NCs, introducing the mediator via a direct mixing fashion, and matching the energy levels, a high TTA-UC quantum yield of 10.4% (out of a 50% maximum) is achieved in one case, which represents a record performance in TTA-UC based on NCs without doping. In another case, TTA-UC photons approaching 4 eV are observed, which is on par with the highest energies observed in optimized organic systems. Importantly, the in-depth investigation reveals that the direct mixing approach to introduce the mediator is a key factor that leads to close to unity efficiencies of triplet energy transfer, which ultimately governs the performance of NC-based TTA-UC systems. These findings provide guidelines for the design of high-performance TTA-UC systems toward solar energy harvesting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号