首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118180篇
  免费   9813篇
  国内免费   4948篇
电工技术   7074篇
技术理论   7篇
综合类   7590篇
化学工业   20366篇
金属工艺   6469篇
机械仪表   7310篇
建筑科学   9637篇
矿业工程   3447篇
能源动力   3503篇
轻工业   7677篇
水利工程   2099篇
石油天然气   7285篇
武器工业   876篇
无线电   13403篇
一般工业技术   14279篇
冶金工业   5516篇
原子能技术   1288篇
自动化技术   15115篇
  2024年   552篇
  2023年   2033篇
  2022年   3524篇
  2021年   4858篇
  2020年   3734篇
  2019年   3142篇
  2018年   3383篇
  2017年   3916篇
  2016年   3295篇
  2015年   4681篇
  2014年   5702篇
  2013年   6768篇
  2012年   7409篇
  2011年   7958篇
  2010年   6949篇
  2009年   6630篇
  2008年   6419篇
  2007年   6079篇
  2006年   6340篇
  2005年   5515篇
  2004年   3762篇
  2003年   3286篇
  2002年   3077篇
  2001年   2803篇
  2000年   2949篇
  1999年   3165篇
  1998年   2677篇
  1997年   2276篇
  1996年   2098篇
  1995年   1827篇
  1994年   1474篇
  1993年   1060篇
  1992年   861篇
  1991年   677篇
  1990年   491篇
  1989年   437篇
  1988年   353篇
  1987年   245篇
  1986年   167篇
  1985年   97篇
  1984年   65篇
  1983年   49篇
  1982年   63篇
  1981年   39篇
  1980年   35篇
  1979年   10篇
  1978年   3篇
  1965年   3篇
  1959年   4篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The dynamic behaviors of two droplets and droplet cluster under an alternating current (AC) electric field are investigated. Two droplets generally undergo transformation from complete coalescence to partial coalescence and finally to non-coalescence as the electric capillary number Cap increases. The critical electric capillary number Capc for complete coalescence in the AC electric field remains unchanged and is twice as large as that in the direct current (DC) electric field when the frequency f ≥ 250 Hz. Charge transfer and reversal of electric field result in the reversal of the direction of electric force, which is the fundamental mechanism of non-coalescence of two droplets and chain formation in droplet cluster. The number of rebounds dramatically increases as f increases, promoting the stability of droplet chain. The droplet chains in the high-frequency AC electric field are longer and more stable than those in the low-frequency AC electric field.  相似文献   
992.
Lighting sources with full-color visible output are widely preferred in practical applications. In addition, modern lighting sources also tend to be intelligentized, and the intelligentization asks for smart luminescence materials. In this work, we attempt to develop novel full-color emitting material with temperature sensing and thermochromatic ability. To this end, the Cu2+ is successfully reduced to Cu+ which is incorporated into the germanate glasses. The glasses are prepared via a melt-quenching technique using graphite powders as reducing reagent. The supper-broadening of the excitation and the emission spectra of Cu+ in the germanate glasses are observed. Full-color emission is realized by introducing Tm3+ as co-dopant to provide the blue component in the spectra. The energy transfer behavior between Cu+ and Tm3+ is investigated, and it is found that these two luminescence centers are independently existent without energy transfer between them. The chromatic properties of the Cu+/Tm3+ co-doped glasses are tuned by Tm3+ concentration and excitation wavelength. The temperature sensing based on the fluorescence intensity ratio technique is demonstrated, and a constant sensitivity for the temperature detection is obtained. Moreover the thermochromatic property is also investigated, and it is found that the studied Cu+/Tm3+-doped glasses exhibit excellent thermochromatic performance.  相似文献   
993.
Monodisperse ZrO2 ceramic beads with size larger than 1 mm have been prepared by an improved micro-droplet spray forming process, through which a compressor and a dispenser were employed to produce droplets continuously. Furthermore, the slurry recipe and drying temperature have been optimized to enhance the sphericity and smoothness of the beads. The sintered ZrO2 ceramic beads present promising mechanical performance, including a relative density of 84.6%, a crush strength of 256.2 ± 36.6 N as well as a Vickers hardness of 1344.4 ± 58.3 HV. Such procedure reveals great potential in mass production of ceramic beads.  相似文献   
994.
The cation exchange method has been demonstrated to be efficient in doping Mn4+ ions into various fluorides to synthesize the red-emitting LED phosphors. This paper, however, reports the challenge in using this method to dope Mn4+ into the Na2SiF6 single crystals, to prepare the fluoride phosphor in single-crystal form, a state-of-the-art study in the white LED lighting field. The millimeter-sized Na2SiF6 single crystals with a uniform columnar morphology (2–3 mm in length) were successfully grown in solution by a slow cooling process after optimizing the precursors. Then, the crystals were soaked in the HF solution dissolved with K2MnF6 to implement Mn4+-doping via the cation exchange process. Evaluation of the Mn4+-doping behavior reveals that the Mn4+ ↔ Si4+ cation exchange is less efficient in the case of single crystal host compared with the polycrystalline powdery ones and by-reactions also occur which generates new phases. The Na2SiF6 single crystals doped with Mn4+ exhibit a series of discrete sharp peaks with intense zero phonon line emission at 617 nm under 450 nm blue irradiation. This study may trigger the exploration of new single crystal fluoride phosphor.  相似文献   
995.
The BaTiO3 powder was prepared via a solid-state reaction route. It was studied for the degradation of bacterial cells, dye, and pharmaceuticals waste using ultrasonically driven piezocatalytic effect. The bacterial catalytic behavior of poled BaTiO3 was remarkably increased during ultrasonication (10% E coli survival in 60 minutes). The structural damages were illustrated using scanning electron micrographs of bacterial cells which demonstrated morphological manifestations under different conditions. Methylene blue (MB dye), ciprofloxacin and diclofenac were also cleaned using the piezocatalytic effect associated with the poled BaTiO3 powder. Around 92, 85, and 78% of degradations were observed within 150 minutes duration for methylene blue, ciprofloxacin, and diclofenac, respectively.  相似文献   
996.
Knowledge on the mechanical and thermophysical properties of ZnO·nAl2O3 is essential for practical applications. Based on the first-principles calculations and the bond valence method, the disordered spinel-type structure of ZnO·nAl2O3 (n = 1–4) was constructed to investigate the composition-dependent mechanical and thermophysical properties. The effects of cation substitution on the hardness, elastic modulus, thermal expansion, and thermal conductivity were revealed from the insights into the chemical bonds. At a higher n, the tetrahedral bond is stronger, manifested as its higher hardness and bulk modulus as well as smaller thermal expansion coefficient. Meanwhile, the octahedral bond is weaker, leading to the lower hardness and bulk modulus, along with the larger expansion coefficient. In consequence, the hardness and elastic moduli of ZnO·nAl2O3 are improved moderately while the expansion coefficient is decreased with the rise of n. Due to the different vibration characteristics of ZnIV and AlIV, the cation disorder in the 8a site provides the primary source of phonon scattering, resulting in the dramatic reduction of thermal conductivity as n increases. The understanding offers guidance on the application-oriented design of new oxide spinels.  相似文献   
997.
ZrO2 microspheres are widely used as a simulant of UO2 in the development of nuclear fuel. However, the cracking of ZrO2 microspheres prepared by internal gelation is still a challenge during drying and sintering processes. To address this issue, we designed and optimized the washing process for obtaining crack-free ZrO2 microspheres. Through thermogravimetric, infrared, Raman, BET, and SEM analysis, it is shown that the cracking of the microspheres is mainly related to the pores in microspheres. The washing solvent with low surface tension is used to reduce the effect of capillary force on pore shrinkage. Therefore, the optimal washing process was designed as trichloroethylene (TCE)—0.5 M NH3.H2O—Propylene glycol methyl ether (PM) and gel microspheres with a high specific surface area of 315.3 m2/g and pore volume of 0.4125 cm3/g were obtained. The characterizations also further showed that when the microspheres were dried and sintered, the water vapor and the decomposition gas of organic matter were completely released from the pores in the microspheres. Our new washing process could be directly extended for preparing crack-free ceramic microspheres by internal gelation.  相似文献   
998.
High-voltage atmospheric cold plasma (HVACP) treatment generates reactive gas species that induce inter- and intramolecular reactions in soybean oil. The goal of this study is to analyze the effect of HVACP treatment on the chemical structure of soybean oil in a hydrogen gas environment at atmospheric pressure. HVACP was used to treat soybean oil (15 g) for up to 6 hours by triplicate. Plasma-generated reactive gas species interact with the sample, producing three distinct fractions identified as a liquid, gel, and solid. Fatty acid profile, Fourier-transform infrared spectroscopy, proton and carbon nuclear magnetic resonance, size-exclusion chromatography, thermal properties, and peroxide value were used to characterize the chemical structure. Results indicated a lower content of polyunsaturated fatty acids, increased content of saturated fatty acids, and the presence of isomers. An insoluble portion was observed in the solid fraction and increased with treatment time up to 42% in the 6-h treated samples. Plasma species may cause two main reactions: polymerization and hydrogenation.  相似文献   
999.
Ti4+-modified MgZrNb2O8 (MgZr1-xTixNb2O8, x = 0, 0.1, 0.2, 0.3, 0.4) ceramics were synthesized using the traditional solid-state reaction method. Pure MgZr1–xTixNb2O8 was detected without any secondary phase via the X-ray diffraction patterns. According to the sintering behavior and the surface morphology results, the introduction of Ti4+ reduced the sintering temperature and promoted the grain growth. The correlations between the dielectric properties and the crystal structure were analyzed through the Rietveld refinement and Raman spectroscopy. The slight shifts of the Raman peaks, corresponding to different vibration modes, were induced by the substitution of Ti4+ for Zr4+ and related to the improved quality factor. In general, the sample of MgZr0.9Ti0.1Nb2O8 sintered at 1320°C for 4 h exhibited promising microwave dielectric properties with an ultra-high Q × f value of 130 123 GHz (at 7.308 GHz, 20°C), which is potential for 5G communication applications.  相似文献   
1000.
Extinction ratio (ER) is one of the important parameters to characterize the polarization-maintaining (PM) performance of the fiber. In this paper, we report the preparation and properties of a novel chalcogenide microstructure fiber with a high ER. We fabricate a preform using a peeled-off extrusion method. The core and cladding material of the fiber are Ge9As23Se68 and Ge10As22Se68. The preform was drawn into a fiber with an average ER of −17.08 dB. The loss of the fiber is less than 2 dB over 5.20–8.55 μm, and the minimum loss of the fiber is 0.57 dB/m at 6.2 μm. Moreover, a flat mid-infrared supercontinuum spectrum spanning from 1.53 to 12.50 μm is generated by pumping an 18-cm-long PM fiber for the first time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号