Carbon-carbon (C-C) coupling reactions represent one of the most powerful tools for the synthesis of complex natural products, bioactive molecules developed as drugs and agrochemicals. In this work, a multifunctional nanoreactor for C-C coupling reaction was successfully fabricated via encapsulating the core-shell Cu@Ni nanocubes into ZIF-8 (Cu@Ni@ZIF-8). In this nanoreactor, Ni shell of the core-shell Cu@Ni nanocubes was the catalytical active center, and Cu core was in situ heating source for the catalyst by absorbing the visible light. Moreover, benefiting from the plasmonic resonance effect between Cu@Ni nanocubes encapsulated in ZIF-8, the absorption range of nanoreactor was widened and the utilization rate of visible light was enhanced. Most importantly, the microporous structure of ZIF-8 provided shape-selective of reactant. This composite was used for the highly shape-selective and stable photocatalysed C-C coupling reaction of boric acid under visible light irradiation. After five cycles, the nanoreactor still remained high catalytical activity. This Cu@Ni@ZIF-8 nanoreactor opens a way for photocatalytic C-C coupling reactions with shape-selectivity.
Highly efficient adsorbents, which can effectively remove both metal ions and dyes from wastewater with robust stability, are strongly required for the remediation of current polluted aqueous system, but still a challenge to be realized. Herein, a new adsorbent has been designed to solve this problem by anchoring diethylene triamine pentaacetic acid (DTPA) grafted polyethyleneimine (PEI) onto carboxylated GO (GOC-g-PD). Given the amino and carboxyl active groups from PEI and GOC/DTPA, our GOC-g-PD displays good adsorption capacity against not only inorganic metal ions (Cu2+ and Pb2+) but also organic dye (methylene blue: MB). The maximum adsorption capacity of GOC-g-PD for Cu2+, Pb2+ and MB reached 309.60 mg·g?1, 316.17 mg·g?1 and 262.10 mg·g?1, respectively. Furthermore, our GOC-g-PD also exhibits good cycling stability and chemical stability against wide pH values. These outstanding properties revealed our GOC-g-PD held great potential in purifying the sewage discharged from industries.