首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111987篇
  免费   8188篇
  国内免费   4194篇
电工技术   5888篇
技术理论   11篇
综合类   6599篇
化学工业   19004篇
金属工艺   5819篇
机械仪表   6675篇
建筑科学   8642篇
矿业工程   3085篇
能源动力   3103篇
轻工业   6671篇
水利工程   1718篇
石油天然气   6233篇
武器工业   691篇
无线电   13989篇
一般工业技术   14248篇
冶金工业   5900篇
原子能技术   1238篇
自动化技术   14855篇
  2024年   435篇
  2023年   1757篇
  2022年   2911篇
  2021年   4005篇
  2020年   3072篇
  2019年   2600篇
  2018年   3004篇
  2017年   3393篇
  2016年   2955篇
  2015年   3868篇
  2014年   4912篇
  2013年   6272篇
  2012年   6581篇
  2011年   7195篇
  2010年   6256篇
  2009年   6171篇
  2008年   6160篇
  2007年   5748篇
  2006年   6032篇
  2005年   5407篇
  2004年   3692篇
  2003年   3195篇
  2002年   2852篇
  2001年   2755篇
  2000年   2874篇
  1999年   3383篇
  1998年   2910篇
  1997年   2546篇
  1996年   2286篇
  1995年   1921篇
  1994年   1551篇
  1993年   1219篇
  1992年   964篇
  1991年   738篇
  1990年   600篇
  1989年   500篇
  1988年   390篇
  1987年   294篇
  1986年   206篇
  1985年   176篇
  1984年   108篇
  1983年   81篇
  1982年   87篇
  1981年   57篇
  1980年   46篇
  1979年   32篇
  1978年   25篇
  1977年   25篇
  1976年   40篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
This work studies the time-dependent behavior of a layered arch adhesively bonded by viscoelastic interlayers. The deformation of the viscoelastic interlayer is represented by the Maxwell–Wiechert model. The constitutive relation in an interlayer is simplified through the quasi-elastic approximation approach. The mechanical property of an arch layer is described by the exact two-dimensional (2-D) elasticity theory in polar coordinates. The stress and displacement components in an arch layer, which strictly satisfy the simply supported boundary conditions, have been analytically derived out. The stresses and displacements are efficiently obtained by means of the recursive matrix method for the arch with any number of layers. The comparison study shows that the 2-D finite element solution has good agreement with the present one, while the solution based on the one-dimensional (1-D) Euler–Bernoulli theory has considerable error, especially for thick arches. The influences of geometrical and material parameters on the time-dependent behavior of the layered arch are analyzed in detail.  相似文献   
992.
The mechanism of radiation-induced detwinning is different from that of deformation detwinning as the former is dominated by supersaturated radiation-induced defects while the latter is usually triggered by global stress. In situ Kr ion irradiation was performed to study the detwinning mechanism of nanotwinned Cu films with various twin thicknesses. Two types of incoherent twin boundaries (ITBs), so-called fixed ITBs and free ITBs, are characterized based on their structural features, and the difference in their migration behavior is investigated. It is observed that detwinning during radiation is attributed to the frequent migration of free ITBs, while the migration of fixed ITBs is absent. Statistics shows that the migration distance of free ITBs is thickness and dose dependent. Potential migration mechanisms are discussed.  相似文献   
993.
Distinguishable detection of the ultraviolet, visible, and infrared spectrum is promising and significant for the super visual system of artificial intelligences. However, it is challenging to provide a photosensor with such broad spectral response ability. In this work, the ultraviolet, visible, and infrared spectrum is distinguished by developing serial photosensors based on perovskite/carbon nanotube hybrids. Oraganolead halide perovskites (CH3NH3PbX3) possess remarkable optoelectronic properties and tunable optical band gaps by changing the halogens, and integration with single‐walled carbon nanotubes can further improve their photoresponsivities. The CH3NH3PbCl3‐based photosensor shows a responsivity up to 105 A W?1 to ultraviolet and no obvious response to visible light, which is superior to that of most ultraviolet sensors. The CH3NH3PbBr3‐based photosensor exhibits a high responsivity to visible light. Serial devices of the two hybrid photosensors with comparable electric and sensory performances can distinguish the spectrum of ultraviolet, visible, and infrared even with varying light intensities. The photosensors also demonstrate excellent mechanical flexibility and bending stability. By taking full advantages of the oraganolead halide perovskites, this work provides flexible high‐responsivity photosensors specialized for ultraviolet, and gives a simple strategy for distinguishable detection of ultraviolet, visible, and infrared spectrum based on the serial flexible photosensors.  相似文献   
994.
The large‐area formation of functional micropatterns with liquid crystals is of great significance for diversified applications in interdisciplinary fields. Meanwhile, the control of molecular alignment in the patterns is fundamental and prerequisite for the adequate exploitation of their photoelectric properties. However, it would be extremely complicated and challenging for discotic liquid crystals (DLCs) to achieve the goal, because they are insensitive to external fields and surface chemistry. Herein, a simple method of patterning and aligning DLCs on flat substrates is disclosed through precise control of the formation and dewetting of the capillary liquid bridges, within which the DLC molecules are confined. Large‐area uniform alignment occurs spontaneously due to directional shearing force when the solvent is slowly evaporated and programmable patterns could be directly generated on desired substrates. Moreover, the in‐plane column direction of DLCs is tunable by slightly tailoring their chemical structures which changes their self‐assembly behaviors in liquid bridges. The patterned DLCs show molecular orientation–dependent charge transport properties and are promising for templating self‐assembly of other materials. The study provides a facile method for manipulation of the macroscopic patterns and microscopic molecular orientation which opens up new opportunities for electronic applications of DLCs.  相似文献   
995.
One challenge for multimodal therapy is to develop appropriate multifunctional agents to meet the requirements of potential applications. Photodynamic therapy (PDT) is proven to be an effective way to treat cancers. Diverse polycations, such as ethylenediamine‐functionalized poly(glycidyl methacrylate) (PGED) with plentiful primary amines, secondary amines, and hydroxyl groups, demonstrate good gene transfection performances. Herein, a series of multifunctional cationic nanoparticles (PRP) consisting of photosensitizer cores and PGED shells are readily developed through simple dopamine‐involving processes for versatile bioapplications. A series of experiments demonstrates that PRP nanoparticles are able to effectively mediate gene delivery in different cell lines. PRP nanoparticles are further validated to possess remarkable capability of combined PDT and gene therapy for complementary tumor treatment. In addition, because of their high dispersities in biological matrix, the PRP nanoparticles can also be used for in vitro and in vivo imaging with minimal aggregation‐caused quenching. Therefore, such flexible nanoplatforms with photosensitizer cores and polycationic shells are very promising for multimodal tumor therapy with high efficacy.  相似文献   
996.
Organic luminescent materials with the ability to reversibly switch the luminescence when subjected to external stimuli have attracted considerable interest in recent years. However, the examples of luminescent materials that exhibit multiresponsive properties are rarely reported. In this work, a new stimuli‐responsive dye P1 is designed and synthesized with two identical chromophores of naphthalimide, one at each side of an amidoamine‐based spacer. This amide‐rich molecule offers many possibilities for forming intra‐ and intermolecular hydrogen bond interactions. Particularly, P1 has an intrinsic property of cocrystallizing with methanol. Compared with the pristine P1 sample, the as‐prepared two‐component cocrystalline material displays an exceptive deep‐blue emission, which is extremely rare among naphthalimide‐based molecules in the solid state. Furthermore, the target material exhibits an obvious mechanochromic fluorescent behavior and a large spectral shift under force stimuli. On the other hand, the cocrystalline material shows an unusual “turn off” thermochromic luminescence accompanied by solvent evaporation. Moreover, using external stimuli to reversibly manipulate fluorescent quantum yields is rarely reported to date. The results demonstrate the feasibility of a new design strategy for solid‐state luminescence switching materials: the incorporation of solvents into organic compounds by cocrystallization to obtain a crystalline state luminescence system.  相似文献   
997.
The solvent‐engineering method is widely used to fabricate top‐performing perovskite solar cells, which, however, usually exhibit inferior reproducibility. Herein, a two‐stage annealing (TSA) strategy is demonstrated for processing of perovskite films, namely, annealing the intermediate phase at 60 °C for the first stage then at 100 °C for the second stage. Compared to conventional direct annealing temperature (DHA) at 100 °C, using this strategy, MAPbI3 films become more controllable, leading to superior film uniformity and device reproducibility with the champion device efficiency reaching 19.8%. More specifically, the coefficient of variation of efficiency for 49 cells is reduced to 5.9%, compared to 9.8% for that using DHA. The TSA process is carefully studied using Fourier transform infrared spectroscopy, X‐ray diffraction, and UV–vis absorption spectroscopy. It is found that in comparison with DHA the formation of hydrogen bonding and crystallization of perovskite are much slower and can be better controlled when using TSA. The improvements in film uniformity and device reproducibility are attributed to: 1) controllable MAPbI3 crystal growth stemming from the progressive formation of hydrogen bonding between methylammonium and halide; 2) suppression of intermediate phase film dewetting, which is believed to be due to its decreased mobility at the initial low‐temperature annealing stage.  相似文献   
998.
Nature has long offered human beings with useful materials. Herein, plant materials including flowers and leaves have been directly used as the dielectric material in flexible capacitive electronic skin (e‐skin), which simply consists of a dried flower petal or leaf sandwiched by two flexible electrodes. The plant material is a 3D cell wall network which plays like a compressible metamaterial that elastically collapses upon pressing plus some specific surface structures, and thus the device can sensitively respond to pressure. The device works over a broad‐pressure range from 0.6 Pa to 115 kPa with a maximum sensitivity of 1.54 kPa?1, and shows high stability over 5000 cyclic pressings or bends. The natural‐material‐based e‐skin has been applied in touch sensing, motion monitoring, gas flow detection, and the spatial distribution of pressure. As the foam‐like structure is ubiquitous in plants, a general strategy for a green, cost‐effective, and scalable approach to make flexible e‐skins is offered here.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号