首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5907篇
  免费   137篇
  国内免费   9篇
电工技术   208篇
综合类   3篇
化学工业   1186篇
金属工艺   139篇
机械仪表   136篇
建筑科学   110篇
矿业工程   2篇
能源动力   153篇
轻工业   500篇
水利工程   28篇
石油天然气   8篇
无线电   566篇
一般工业技术   1023篇
冶金工业   1384篇
原子能技术   167篇
自动化技术   440篇
  2023年   45篇
  2022年   90篇
  2021年   138篇
  2020年   78篇
  2019年   80篇
  2018年   110篇
  2017年   80篇
  2016年   117篇
  2015年   84篇
  2014年   118篇
  2013年   303篇
  2012年   194篇
  2011年   283篇
  2010年   185篇
  2009年   213篇
  2008年   226篇
  2007年   183篇
  2006年   184篇
  2005年   161篇
  2004年   151篇
  2003年   163篇
  2002年   141篇
  2001年   102篇
  2000年   95篇
  1999年   141篇
  1998年   509篇
  1997年   347篇
  1996年   262篇
  1995年   136篇
  1994年   135篇
  1993年   150篇
  1992年   62篇
  1991年   59篇
  1990年   60篇
  1989年   54篇
  1988年   49篇
  1987年   32篇
  1986年   53篇
  1985年   59篇
  1984年   40篇
  1983年   45篇
  1982年   41篇
  1981年   49篇
  1980年   42篇
  1979年   27篇
  1978年   19篇
  1977年   29篇
  1976年   50篇
  1975年   13篇
  1973年   14篇
排序方式: 共有6053条查询结果,搜索用时 15 毫秒
201.
The histone methyltransferase SET7/9 methylates not only histone but also non‐histone proteins as substrates, and therefore, SET7/9 inhibitors are considered candidates for the treatment of diseases. Previously, our group identified cyproheptadine, used clinically as a serotonin receptor antagonist and histamine receptor (H1) antagonist, as a novel scaffold of the SET7/9 inhibitor. In this work, we focused on dibenzosuberene as a substructure of cyproheptadine and synthesized derivatives with various functional groups. Among them, the compound bearing a 2‐hydroxy group showed the most potent activity. On the other hand, a 3‐hydroxy group or another hydrophilic functional group such as acetamide decreased the activity. Structural analysis clarified a rationale for the improved potency only by tightly restricted location and type of the hydrophilic group. In addition, a SET7/9 loop, which was only partially visible in the complex with cyproheptadine, became more clearly visible in the complex with 2‐hydroxycyproheptadine. These results are expected to be helpful for further structure‐based development of SET7/9 inhibitors.  相似文献   
202.
Production of MAG by a lipase-catalyzed reaction is known to be effective at low temperature. This phenomenon can be explained by assuming that synthesized MAG are excluded from the reaction system because MAG, which have low m.p., are solidified at low temperatures. Consequently, MAG are efficiently accumulated and do not serve as the precursor of DAG. If this hypothesis is correct, the critical temperature for MAG production, defined as the highest temperature at which DAG synthesis is repressed, should depend on the m.p. of the MAG. Esterification of FFA with glycerol using Candida rugosa, Rhizopus oryzae, and Penicillium camembertii lipases produced MAG efficiently at low temperatures. However, Candida lipase showed very low esterification activity at high temperatures (>20°C), and Rhizopus lipase produced not only MAG but also DAG even at low temperatures. Meanwhile, P. camembertii lipase catalyzed synthesis of MAG only from FFA and glycerol at low temperatures, although the enzyme catalyzed synthesis of DAG from MAG in addition to synthesis of MAG at high temperatures. We thus studied the effect of temperature on esterification of C10−C18 FFA with glycerol using Penicillium lipase as a catalyst and determined the critical temperatures for production of MAG. The critical temperature for production of each MAG showed a linear correlation with m.p. of the MAG, which supported the hypothesis. In addition, because the m.p. of MAG are estimated from that of the constituent FA, the optimal temperature for production of MAG can be predicted from the m.p. of the FFA used as a substrate.  相似文献   
203.
The functions of Trp612, Leu734, and Tyr736 of Euphorbia tirucalli β‐amyrin synthase were examined. The aliphatic variants (Ala, Val, Met) of Trp612 showed almost no activity, but the aromatic variants exhibited high activities: 12.5 % of the wild‐type activity for the W612H variant, 43 % for W612F, and 63 % for W612Y. That is, the enzymatic activities of the variants increased in proportion to the increase in π‐electron density. Thus, the major function of Trp612 is to stabilize transient cations through a cation–π interaction. The Phe and Tyr variants caused a distorted folding conformation, especially at the E‐ring site, which generated the aberrantly cyclized products germanicol and lupeol. The L734G and L734A variants exhibited significantly decreased activities but yielded taraxerol in a high production ratio. The Val, Ile, and Met variants showed markedly high activities (56–78 % of wild‐type activity); therefore, appropriate steric bulk is required at this position. The aliphatic variants of Tyr736 showed markedly decreased activities, but the Phe mutant exhibited high activity (67 %), which indicates that the π electrons are critical for catalysis. Homology modeling indicated that Tyr736 and Leu734 are perpendicular to the substrate and are situated face to face, which suggests that a CH–π interaction occurs between Tyr736 and Leu734, reinforcing the protein architecture, and that Tyr736 cannot stabilize cationic intermediates through a cation–π interaction.  相似文献   
204.
205.
The effectiveness of the ab(ad)sorption and the subsequent reduction (abbreviated as ASR hereafter) system for the removal of highly dilute NO has been examined using a flow-type reaction system. The ASR system comprises two serial processes: first, NO is absorbed into (and/or adsorbed on) the system in the presence of O2 until saturation, and then the absorbed NO is decomposed, for example, by reduction at a higher temperature in the presence of propene and oxygen. YBa2Cu3Oy (YBC) and Ce-ZSM-5 were chosen in this study as materials for absorption and reduction, respectively. Efficient removal of NO was attained when the first layer consisting of a mixture of YBC and Ce-ZSM-5 was combined with the second layer of Ce-ZSM-5, and propene was additionally introduced between the two layers during the reductive decomposition. By this ASR system, the amount of NO absorption reached 1.5 mol per mole of YBC at 573 K and 60% of the NO absorbed was selectively decomposed to N2 at 623 K in 9 h (N balance, 75%; N2 selectivity, 79%).  相似文献   
206.
The farnesoid X receptor (FXR) is a major nuclear receptor of bile acids; its activation suppresses sterol regulatory element-binding protein 1c (SREBP1c)-mediated lipogenesis and decreases the lipid contents in the liver. There are many reports showing that the administration of ursodeoxycholic acid (UDCA) suppresses lipogenesis and reduces the lipid contents in the liver of experimental animals. Since UDCA is not recognized as an FXR agonist, these effects of UDCA cannot be readily explained by its direct activation of FXR. We observed that the dietary administration of UDCA in mice decreased the expression levels of SREBP1c and its target lipogenic genes. Alpha- and β-muricholic acids (MCA) and cholic acid (CA) were the major bile acids in the mouse liver but their contents decreased upon UDCA administration. The hepatic contents of chenodeoxycholic acid and deoxycholic acid (DCA) were relatively low but were not changed by UDCA. UDCA did not show FXR agonistic or antagonistic potency in in vitro FXR transactivation assay. Taking these together, we deduced that the above-mentioned change in hepatic bile acid composition induced upon UDCA administration might cause the relative increase in the FXR activity in the liver, mainly by the reduction in the content of β-MCA, a farnesoid X receptor antagonist, which suggests a mechanism by which UDCA suppresses lipogenesis and decreases the lipid contents in the mouse liver.  相似文献   
207.
Mineral oil is commonly used as an electrical insulating oil in transformers because of its relatively high electrical insulating ability and fluidity. Considering the depletion of resources and environmental problems, however, fatty acid esters synthesized from natural plant oils are attracting attention as an environmentally friendly insulating oil. In addition, fatty acid esters such as methyl octanoate, methyl dodecanoate, 2-ethylhexyl octanoate, and 2-ethylhexyl dodecanoate have high fluidity, and also show excellent moisture tolerance against dielectric breakdown compared to mineral oil. In the present study, to clarify the reason for the superior moisture tolerance of fatty acid esters, the status of dissolved water in esters is investigated with IR spectroscopic measurements and density functional theory (DFT) calculations. It is revealed that water molecules in fatty acid esters are trapped by the ester moiety of fatty acid esters. As a result, fatty acid esters have a higher moisture tolerance against dielectric breakdown than mineral oil.  相似文献   
208.
Formations of graded distribution of SiC ceramic particles within the hollow cylindrical shaped Al/SiC functionally graded materials (FGMs) fabricated by centrifugal solid-particle method (CSPM) and centrifugal mixed-powder method (CMPM) under huge centrifugal force are experimentally and theoretically investigated. The movement of SiC ceramic particles in viscous liquid under centrifugal force is explained based on Stoke's law. The effect of compositional gradient of particles on viscosity is taken into account. Also, the effect of temperature distribution on viscosity and density are considered. A computer code to simulate the formation of compositional gradient in the Al/SiC FGMs fabricated by CSPM and CMPM is developed. From the results, it is found that the volume fraction of SiC ceramic particles can be graded from the inner to the outer surface of hollow cylindrical shaped Al/SiC FGMs by CSPM. Meanwhile by CMPM, the SiC ceramic particles can be dispersed on the outer surface of hollow cylindrical shaped Al/SiC FGMs. The graded distribution in Al/SiC FGMs under huge centrifugal force is found to be significantly affected by the mold temperature but less affected by the temperature of molten Al and casting atmosphere.  相似文献   
209.
Carbon-and-oxygen-doped AlN specimens were prepared by combustion synthesis using Al, graphite, and AlN. Graphite addition changed the product color from white to blue. By XRD, the lattice constant increased slightly with increasing carbon content. Blue AlN powder was synthesized with a molar ratio of the diluent AlN of 0.2-0.5 with a fixed graphite content of 0.05. At an AlN molar ratio exceeding 0.6, carbon was not successfully incorporated due to the lower reaction temperature. Calcination at 800°C in air removed residual graphite without changing the crystal structure or product color. Oxygen, nitrogen, and carbon analyses revealed that blue AlN powders contained 0.45-0.54 mass% carbon and 1.4-1.6 mass% oxygen, while the undoped AlN contained 0.021 mass% carbon and 0.94 mass% oxygen. The origin of the white-to-blue color change was investigated via reflection measurements. Blue AlN exhibits an absorption peak at 634 nm (1.96 eV). From first-principles electronic structure calculations, the C-doped AlN and carbon-and-oxygen-doped AlN with a 1:1 ratio could be classified as p-type, whereas the O-doped AlN and 1:3 carbon-and-oxygen-doped AlN were n-type. One reason for the absorption peak at 634 nm may be a transition from the conduction band to an upper unoccupied state. These results suggest the possible control of optical and electronic properties of AlN via carbon-and-oxygen doping.  相似文献   
210.
Coloration of amorphous silica powder containing titania was investigated by nitridation in an ammonia flow. The oxide precursors were obtained by the hydrolysis of a mixture of tetraethyl orthosilicate (TEOS) and tetrabutoxy titanium (TBT). The color changed with the amount of TBT in the mixture, the hydrolysis pH and the ammonolysis temperature. The original white color of the 8 mol% TBT powder hydrolyzed under basic pH conditions changed to pale goldenrod at 700°C, then to dark olive green at 800°C, and further darkened with increasing ammonolysis temperature. A steel-blue color appeared at 900°C for the powder obtained with 3 mol% TBT, and increased in darkness at 1000°C. A similar bluish color was observed for powders obtained by acidic hydrolysis after ammonolysis above 900°C, and this was independent of the amount of titania, although the chroma decreased with increasing firing temperature for the powder with 3 mol% TBT. The ammonolysis powder products were characterized using X-ray diffraction (XRD), electron probe micro analysis (EPMA), transmission electron microscopy-electron energy-loss spectroscopy (TEM-EELS), scanning transmission electron microscopy-high-angle annular dark-field imaging (STEM-HAADF) and Ti–K edge X-ray absorption fine structure (XAFS). The color change was related to both precipitated TiN nanocrystals and residual titanium in the amorphous silica matrix. The TiN exhibited a goldish reflection and also plasmonic absorption from light blue to gray depending on the TiN crystallite size. The plasmonic absorption and resonance of nanocrystalline TiN will be useful similarly to that of gold in nanotechnology for various kinds of energy application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号