首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111817篇
  免费   8151篇
  国内免费   4195篇
电工技术   5849篇
技术理论   11篇
综合类   6585篇
化学工业   18950篇
金属工艺   5819篇
机械仪表   6667篇
建筑科学   8635篇
矿业工程   3080篇
能源动力   3103篇
轻工业   6638篇
水利工程   1714篇
石油天然气   6225篇
武器工业   692篇
无线电   13975篇
一般工业技术   14237篇
冶金工业   5895篇
原子能技术   1243篇
自动化技术   14845篇
  2024年   432篇
  2023年   1751篇
  2022年   2881篇
  2021年   3983篇
  2020年   3052篇
  2019年   2585篇
  2018年   2983篇
  2017年   3369篇
  2016年   2933篇
  2015年   3854篇
  2014年   4887篇
  2013年   6254篇
  2012年   6559篇
  2011年   7177篇
  2010年   6253篇
  2009年   6165篇
  2008年   6173篇
  2007年   5751篇
  2006年   6045篇
  2005年   5412篇
  2004年   3691篇
  2003年   3194篇
  2002年   2848篇
  2001年   2755篇
  2000年   2874篇
  1999年   3385篇
  1998年   2911篇
  1997年   2550篇
  1996年   2291篇
  1995年   1925篇
  1994年   1556篇
  1993年   1222篇
  1992年   964篇
  1991年   742篇
  1990年   600篇
  1989年   502篇
  1988年   392篇
  1987年   294篇
  1986年   207篇
  1985年   177篇
  1984年   108篇
  1983年   81篇
  1982年   88篇
  1981年   58篇
  1980年   46篇
  1979年   32篇
  1978年   25篇
  1977年   25篇
  1976年   40篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Although the encrypted anti-counterfeiting technology based on infiltration-controlled photonic crystals has attracted widespread attention, the information has only hidden and display states. The more diverse and complex encryption effect requires a continuous and programmable color transformation. Inspired by the dynamic camouflage in chameleons and cephalopods, a programmable thermochromic patterned photonic film is developed for encrypted anti-counterfeiting, which is constructed by infiltrating thermoresponsive poly(oligo ethylene glycol acrylate) copolymers in SiO2-coated ZnS photonic crystals. The responsive temperature range is determined by the lower critical solution temperature of filled copolymers, which is tunable by controlling the ratios of different monomers in copolymerization. Based on this, the responsive range is adjusted to 5–55 °C and decoding temperature is set at 20 °C. The pattern is hidden either when the water temperature is >55 °C or <5 °C. Only when the water temperature accurately matches the decoding temperature (20 °C), do the different areas display the preset colors, resulting in the complete pattern being revealed. The design of this programmable thermochromic patterned photonic film indicates a new direction for the encrypted anti-counterfeiting technology, which can carry more abundant information and encrypt them more complex and sophisticated.  相似文献   
992.
Designing hydrogen evolution reaction (HER) electrocatalysts for facilitating its sluggish adsorption kinetics is crucial in generating green hydrogen via sustainable water electrolysis. Herein, a high-performance ultra-low Ruthenium (Ru) catalyst is developed consisting of atomically-layered Ru nanoclusters with adjacent single Ru sites, which executs a bridging-Ru-H activation strategy to kinetically accelerate the HER elementary steps. Owing to its optimal electronic structure and unique adsorption configuration, the hybrid Ru catalyst simultaneously displayed a drastically reduced overpotential of 16 mV at 10 mA cm−2 as well as a low Tafel slope of 35.2 mV dec−1 in alkaline electrolyte. When further coupled with a commercial IrO2 anode catalyst, the ensembled anion-exchange membrane water electrolyzer achievs a current density of 1.0 A cm−2 at a voltage of only 1.70 Vcell. In situ spectroscopic analysis verified that Ru single atom and atomically-layered Ru nanoclusters in the hybrid materials play a critical role in facilitating water dissociation and weakening *H adsorption, respectively. Theoretical calculations further elucidate the underlaying mechanism, suggesting that the dissociated proton at the single atom Ru site orients itself adjacently with Ru nanoclusters in a bridged structure through targeted charge transfer, thus promoting Volmer-Heyrovsky dynamics and boosting the HER activity.  相似文献   
993.
本文设计了一种电流模式下,带电流模直流失调消除(DCOC)电路的class-AB的可编程增益放大器。电路基于电流放大器,可以实现40dB的增益动态范围,增益步长为1dB。电流模可编程增益放大器由0.18-μm CMOS工艺实现,电路具有较宽的电流增益范围、较低的直流功耗和较小的芯片面积。放大器电路芯片面积为0.099μm2,在1.8V电压下静态电流为2.52mA。测试结果表明电路增益范围为10dB到50dB,增益误差为±0.40dB,OP1dB为11.80dBm到13.71dBm,3dB带宽为22.2MHz到34.7MHz。  相似文献   
994.
陈武 《移动信息》2023,45(6):33-35
近年来,可持续发展和绿色发展越来越受到能源消耗型企业的重视。通信产业作为关乎民生的重要产业,各大运营商的经营规模和利润产出极为可观,但其作为资源消耗性企业,在能耗和碳排放方面的规模也无法忽视。通信产业现有的节能减排策略以减少基站环境控制设备的功耗为主,缺少完善的基于基站设备的能耗控制技术。文中结合实际情况,简要叙述了各种技术在无线网络的节能降耗方面的作用。  相似文献   
995.
A wide-band fully differential fractional-N frequency synthesizer for multi-standard application is presented. The single fully differential LC–VCO with 28.5 % tuning rang and a set of dividers, quadrature self-mixer are designed to accomplish the multi-frequency bands with the frequency band from 0.38 to 6 GHz and from 9.0 to 12 GHz. It covers several wireless standards. A novel high isolation multiplexer is presented to achieve the frequency band selection. This chip was implemented with 65 nm CMOS technology and the maximum consumption is 20.05 mA from 1.2 V power supply. It occupies an active area of 1.5 mm2. The measured typical phase noise of the frequency synthesizer is ?114.6 dBc/Hz from 1 MHz offset for 4.85 GHz output.  相似文献   
996.
The power conversion efficiency (PCE) of organic solar cells (OSCs) has reached high values of over 19%. However, most of the high-efficiency OSCs are fabricated by spin-coating with toxic solvents and the optimal photoactive layer thickness is limited to 100 nm, limiting practical development of OSCs. It is a great challenge to obtain ideal morphology for high-efficiency thick-film OSCs when using non-halogenated solvents due to the unfavorable film formation kinetics. Herein, high-efficiency ternary thick-film (300 nm) OSCs with PCE of 15.4% based on PM6:BTR-Cl:CH1007 are fabricated by hot slot-die coating using non-halogenated solvent (o-xylene) in the air. Compared to PM6:BTR-Cl:Y6 blends, the stronger pre-aggregation of CH1007 in solution induces the earlier aggregation of CH1007 molecules and longer aggregation time, and thus results in high and balanced crystallinity of donors and acceptor in CH1007-based ternary film, which led to high-carrier mobility and suppressed charge recombination. The ternary strategy is further used to fabricate high-efficiency, thick-film, large-area, and flexible devices processed from non-halogenated solvents, paving the way for industrial development of OSCs.  相似文献   
997.
Hemostatic powders are widely used in clinical and emergency situations but often exhibit low wet adhesion, cytotoxicity concerns, and do not work well for lethal non-compressible hemorrhage. Here a new kind of gelable and adhesive powder (GAP) is developed, which integrates chitosan microspheres (CM), tetra-armed poly(ethylene glycol) amine (Tetra-PEG-NH2), and tetra-armed poly(ethylene glycol) succinimidyl succinate (Tetra-PEG-SS). Upon application to the wound site, the macroporous CM can rapidly absorb the interfacial liquids, and meanwhile, the hydrated GAP turns into hydrogel (crosslinking between Tetra-PEG-SS and CM/Tetra-PEG-NH2) with stable and robust adhesion to the wet tissue though covalent bonding. The in vitro and in vivo results suggest that the GAP with optimized formulation exhibits strong tissue adhesive, high burst pressure, and enhanced blood clotting ability, as well as excellent biocompatibility and on-demand removal properties. A significantly improved hemostatic efficacy is demonstrated in the rat liver, spleen, and femoral artery injury models compared to that of the CM, commercial fibrin glue, and Yunnan Baiyao (YB). The GAP can also halt the severe bleeding from pig visceral organs. Overall, the proposed GAP has many advantages including good biocompatibility, rapid and effective hemostasis, low cost, and ease of use, making it as a promising hemostat for lethal non-compressible hemorrhage control.  相似文献   
998.
Developing low-cost and high-efficient bifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is greatly significant for water electrolysis. Here, Ni3N-CeO2/NF heterostructure is synthesized on the nickel foam, and it exhibits excellent HER and OER performance. As a result, the water electrolyzer based on Ni3N-CeO2/NF bifunctional catalyst only needs 1.515 V@10 mA cm−2, significantly better than that of Pt/C||IrO2 catalysts. In situ characterizations unveil that CeO2 plays completely different roles in HER and OER processes. In situ infrared spectroscopy and density functional theory calculations indicate that the introduction of CeO2 can optimizes the structure of interface water, and the synergistic effect of Ni3N and CeO2 improve the HER activity significantly, while the in situ Raman spectra reveal that CeO2 accelerates the reconstruction of OV (oxygen vacancy)-rich NiOOH for boosting OER. This study clearly unlocks the different catalytic mechanisms of CeO2 for boosting the HER and OER activity of Ni3N for water splitting, which provides the useful guidance for designing the high-performance bifunctional catalysts for water splitting.  相似文献   
999.
Improving interfacial solar evaporation performance is crucial for the practical application of this technology in solar-driven seawater desalination. Lowering evaporation enthalpy is one of the most promising and effective strategies to significantly improve solar evaporation rate. In this study, a new pathway to lower vaporization enthalpy by introducing heterogeneous interactions between hydrophilic hybrid materials and water molecules is developed. 2D MoN1.2 nanosheets are synthesized and integrated with rGO nanosheets to form stacked MoN1.2-rGO heterostructures with massive junction interfaces for interfacial solar evaporation. Molecular dynamics simulation confirms that atomic thick 2D MoN1.2 and rGO in the MoN1.2-rGO heterostructures simultaneously interact with water molecules, while the interactions are remarkably different. These heterogeneous interactions cause an imbalanced water state, which easily breaks the hydrogen bonds between water molecules, leading to dramatically lowered vaporization enthalpy and improved solar evaporation rate (2.6 kg m−2 h−1). This study provides a promising strategy for designing 2D-2D heterostructures to regulate evaporation enthalpy to improve solar evaporate rate for clean water production.  相似文献   
1000.
The rational design and construction of efficient and inexpensive bifunctional oxygen electrocatalysts are highly desirable for the development of rechargeable Zn–air batteries (ZABs). Although single-atom Fe sites anchored on N-doped carbon catalysts (Fe1/NC) ensure high oxygen reduction reaction activity, their unitary atomically dispersed active center faces difficult condition in catalyzing oxygen evolution reaction simultaneously. Herein, a composite catalyst containing heterointerface between Fe1/NC and selenides ((Fe,Co)Se2) is constructed. The obtained (Fe,Co)Se2@Fe1/NC exhibits extremely narrow potential gap of 0.616 V and remarkable stability in alkaline media, outperforming the benchmark catalysts (Pt/C+RuO2: 0.720 V). Experimental results and density functional theory calculations reveal that heterointerface between Fe1/NC and (Fe,Co)Se2 accelerates the electron transfer and provides more moderate adsorption sites, which endow (Fe,Co)Se2@Fe1/NC with extremely high bifunctional oxygen catalytic activity. This study not only provides a superior bifunctional catalyst for ZABs, but also enriches the application of single-atom catalysts in multifunctional energy storage and conversion devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号