A feasibility analysis methodology adopted from reactive distillation is applied to membrane reactors. A model is formulated to depict the reactive liquid phase composition on the retentate side of a continuous type membrane reactor. The effects of both the chemical reaction kinetics and the membrane mass transfer kinetics on the feasible products are elucidated by means of retentate phase diagrams and bifurcation analysis. The proposed method can be applied to various membrane processes, independent of the specific structure of the membrane. Two quaternary reaction systems are considered to illustrate the methodology. In the first hypothetical system, it is shown how selective membranes can influence the sequence of effective volatilities which in turn affects the feasible products of the system. In the second example of practical importance, i.e. the heterogeneously catalysed synthesis of propyl acetate coupled with permeation through a porous polycarbonate membrane, the dusty gas model is applied to describe the component fluxes through the membrane. For the latter reaction system, the existence of reactive arheotrope is demonstrated. Arheotropes represent mass transfer controlled feasible products of membrane separation process. 相似文献
The increasing complecity of many expert system application areas calls for the integration of the knowledge of multiple experts. The use of multiple experts introduces some interesting new problems during the process of knowledge acquisition. The problems are further complicated when the experts are geographically dispersed or unavailable for face-to-face interactions.
This article discusses the motivations for acquiring the knowledge of multiple experts, the problems related to knowledge acquisition, new issues that arise whens multiple experts interact, solutions that can be brought to bear in building multiple expert systems (particularly when experts are geographically dispersed), and new tools for knowledge engineers to use when dealing with multiple experts. 相似文献
The effect of ion exchange conditions, such as Si/Al ratio, precursor copper salt, pH and concentration of the solution, on the catalytic activity in SCR of NO by propane and on the electronic state of copper ions in Cu-ZSM-5 has been studied. The NO conversion in NO SCR by C3H8 has been found to reach a maximum value at Cu/Al ratio about 0.37–0.4 and remain constant at higher Cu/Al.
ESR and UV–vis DR spectroscopy have been used to elucidate stabilization conditions of copper ions in Cu-ZSM-5 zeolites as isolated Cu2+ ions, chain copper oxide structures and square-plain oxide clusters. The ability of copper ions for reduction and reoxidation in the chain structures may be responsible for the catalytic activity of Cu-ZSM-5. These transformations of copper ions are accompanied by the observation of intervalence transitions Cu2+–Cu+ and CTLM of the chain structures in the UV–vis spectra. 相似文献
This paper presents design techniques of CMOS ultra-wide-band (UWB) amplifiers for multistandard communications. The goal of this paper is to propose a compact, simple, and robust topology for UWB low-noise amplifiers, which yet consumes a relatively low power. To achieve this goal, a common-gate amplifier topology with a local feedback is employed. The first amplifier uses a simple inductive peaking technique for bandwidth extension, while the second design utilizes a two-stage approach with an added gain control feature. Both amplifiers achieve a flat bandwidth of more than 6 GHz and a gain of higher than 10 dB with supply voltages of 1.8-2.5 V. Designs with different metal thicknesses are compared. The advantage of using thick-metal inductors in UWB applications depends on the chosen topology. 相似文献