首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   365867篇
  免费   28488篇
  国内免费   14490篇
电工技术   20554篇
技术理论   33篇
综合类   22707篇
化学工业   61412篇
金属工艺   21029篇
机械仪表   23032篇
建筑科学   28735篇
矿业工程   11023篇
能源动力   10279篇
轻工业   22930篇
水利工程   6447篇
石油天然气   23170篇
武器工业   2853篇
无线电   41795篇
一般工业技术   43704篇
冶金工业   18941篇
原子能技术   3724篇
自动化技术   46477篇
  2024年   1208篇
  2023年   5374篇
  2022年   9255篇
  2021年   14143篇
  2020年   10287篇
  2019年   8669篇
  2018年   9858篇
  2017年   11274篇
  2016年   9906篇
  2015年   13943篇
  2014年   17507篇
  2013年   21341篇
  2012年   23075篇
  2011年   25443篇
  2010年   22041篇
  2009年   21047篇
  2008年   20552篇
  2007年   20037篇
  2006年   20644篇
  2005年   17968篇
  2004年   11673篇
  2003年   10047篇
  2002年   9465篇
  2001年   8352篇
  2000年   8817篇
  1999年   10191篇
  1998年   8474篇
  1997年   7205篇
  1996年   6661篇
  1995年   5550篇
  1994年   4564篇
  1993年   3307篇
  1992年   2661篇
  1991年   1997篇
  1990年   1500篇
  1989年   1182篇
  1988年   967篇
  1987年   646篇
  1986年   497篇
  1985年   362篇
  1984年   250篇
  1983年   167篇
  1982年   181篇
  1981年   141篇
  1980年   118篇
  1979年   58篇
  1978年   34篇
  1977年   32篇
  1976年   54篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 968 毫秒
21.
Composites based on hafnium carbide and reinforced with continuous naked carbon fiber with and without PyC interface were prepared at low temperature by precursor infiltration and pyrolysis and chemical vapor deposition method. The microstructure, mechanical property, cyclic ablation and fiber bundle push-in tests of the composites were investigated. The results show that after three times ablation cycles, the bending strength of samples without PyC interface decreased by 63.6 %; the bending strength of samples with PyC interface only decreased by 37.8 %. The force displacement curve of the samples with PyC interface presented a well pseudoplastic deformation state. The mechanical behavior difference of two kinds of composites was due to crucial function of PyC interface phase including protection of fiber and weakening of fiber/matrix interface.  相似文献   
22.
B4C-TiB2 ceramics (TiB2 ranging 5~70 vol%) with Mo-Co-WC as the sintering additive were prepared by spark plasma sintering. In comparison with B4C-TiB2 without additive, the enhanced densification was evident in the sintered specimen with Mo-Co-WC additive. Core-rim structured grain was observed around TiB2 grains. The interface of the rim between TiB2 and B4C phases demonstrated different feature: the inner borderline of the rim exhibited a smooth feature, whereas a sharp curved grain boundary was observed between the rim and the B4C grain. The formation mechanism is discussed: the epitaxial growth of (Ti,Mo,W)B2 rim around the TiB2 core may occur as a result of the solid solution and dissolution-precipitation between TiB2 phase and the sintering additive. It was revealed that the fracture toughness increased as the content of TiB2 content increased, alongside the decreased hardness. B4C-30 vol% TiB2 specimen demonstrated the optimal combination of mechanical properties, reaching Vickers hardness of 24.3 GPa and fracture toughness of 3.33 MPa·m1/2.  相似文献   
23.
Indium Tin Oxide (ITO) films were prepared, at room temperature, on a fluorphlogopite substrate using magnetron sputtering technology. At various temperatures of 500 °C, 600 °C, 700 °C, 800 °C, and 900 °C, the samples were (had) annealed for 2 h (a 2-h duration). The results showed improvement in the crystalline performance of ITO film at selected annealing temperatures, with a significant reduction in resistivity at 800 °C. The lowest resistivity is 4.08 × 10?4 Ω-cm, which is nearly an order of magnitude lower than the unannealed sample. All samples have an average light transmittance above 85% in the visible light range (400–800 nm), and with increasing annealing temperature, the average light transmittance tends to decrease. Besides, at the sensitive wavelength of 550 nm, the light transmittance is as high as 93.74%. The sheet resistance testing of the sample was through the number of bending times, which revealed that with the increase of the number of bending, the sheet resistance increases. However, after 1200 bending times, the change rate of the sheet resistance remains below 5%. Thus, the ITO film prepared on the flexible fluorphlogopite substrate revealed excellent optical and electrical properties, good flexibility, and improved stability after high-temperature annealing, which guarantees successful application in flexible electronic devices.  相似文献   
24.
Given the continuing issues of environment and energy, methane dry reforming for syngas production have sparked interest among researchers, but struggled with the process immaturity owing to catalyst deactivation. This review summarizes the recent advances in the development of efficient and stable catalysts with strong resistance to coking and metal sintering, including the application of novel materials, the assessment of advanced characterizations and the compatibility to improved reaction system. One feasible option is the crystalline oxide catalysts (perovskite, pyrochlore, spinel and LDHs), which feature a fine metal dispersion and surface confinement effect via a metal exsolution strategy and exhibit superior reactivity and stability. Some new materials (h-BN, clays and MOFs) also extend the option because of their unique morphology and microstructure. It also is elaborated that progresses were achieved in advanced characterizations application, leading to success in the establishment of reaction mechanisms and attributions to the formed robust catalysts. In addition, the perspective described the upgrade of reaction system to a higher reaction efficiency and milder reaction conditions. The combination of efficient reaction systems and robust catalysts paves a way for a scaling-up application of the process.  相似文献   
25.
The potential of using high metals containing coal gangue and lignite to prepare high-activity coal char-based catalysts is investigated for effective biomass tar decomposition. Loose structure and rough surface are formed for these char-based catalysts with heterogeneous distribution of a large number of inorganic particles. In the biomass tar decomposition, the performance of the coal char-based catalysts is significantly influenced by the content of the metals in the raw materials and coal gangue char (GC) with the ash content as high as 50.80% exhibits the highest activity in this work. A high biomass tar conversion efficiency of 93.5% is achieved at 800 °C along with a significant increase in the fuel gas product. During the five-time consecutive tests, the catalytic performance of GC increases a little at the second or third times reuse and remains relatively stable, showing the remarkable stability of the catalyst in biomass tar decomposition applications.  相似文献   
26.
27.
28.
Large domain wall (DW) conductivity in an insulating ferroelectric plays an important role in the future nanosensors and nonvolatile memories. However, the wall current was usually too small to drive high-speed memory circuits and other agile nanodevices requiring high output-powers. Here, a large domain-wall current of 67.8 μA in a high on/off ratio of ~4460 was observed in an epitaxial Au/BiFeO3/SrRuO3 thin-film capacitor with the minimized oxygen vacancy concentration. The studies from read current-write voltage hysteresis loops and piezo-response force microscope images consistently showed remaining of partially unswitched domains after application of an opposite poling voltage that increased domain wall density and wall current greatly. A theoretical model was proposed to explain the large wall current. According to this model, the domain reversal occurs with the appearance of head-to-head and tail-to-tail 180° domain walls (DWs), resulting in the formation of highly conductive wall paths. As the applied voltage increased, the domain-wall number increased to enhance the on-state current, in agreement with the measurements of current-voltage curves. This work paves a way to modulate DW currents within epitaxial Au/BiFeO3/SrRuO3 thin-film capacitors through the optimization of both oxygen vacancy and domain wall densities to achieve large output powers of modern domain-wall nanodevices.  相似文献   
29.
Femtosecond (fs) lasers have been proved to be reliable tools for high-precision and high-quality micromachining of ceramic materials. Nevertheless, fs laser processing using a single-mode beam with a Gaussian intensity distribution is difficult to obtain large-area flat and uniform processed surfaces. In this study, we utilize a customized diffractive optical element (DOE) to redistribute the laser pulse energy from Gaussian to square-shaped Flat-Top profile to realize centimeter-scale low-damage micromachining on single-crystal 4H–SiC substrates. We systematically investigated the effects of processing parameters on the changes in surface morphology and composition, and an optimal processing strategy was provided. Mechanisms of the formation of surface nanoparticles and the removal of surface micro-burrs were discussed. We also examined the distribution of subsurface defects caused by fs laser processing by removing a thin surface layer with a certain depth through chemical mechanical polishing (CMP). Our results show that laser-induced periodic surface structures (LIPSSs) covered by fine SiO2 nanoparticles form on the fs laser-processed areas. Under optimal parameters, the redeposition of SiO2 nanoparticles can be minimized, and the surface roughness Sa of processed areas reaches 120 ± 8 nm after the removal of a 10 μm thick surface layer. After the laser processing, micro-burrs on original surfaces are effectively removed, and thus the average profile roughness Rz of 2 mm long surface profiles decreases from 920 ± 120 nm to 286 ± 90 nm. No visible micro-pits can be found after removing ~1 μm thick surface layer from the laser-processed substrates.  相似文献   
30.
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films are attracting famous applications in antistatic coating, energy storage and conversion, printed electronics, and biomedical fields due to their conductivity, optical transparency and flexibility. However, PEDOT:PSS has poor dispersion stability during long-term storage and transport. Moreover, the dried PEDOT:PSS films are insoluble in any solvent and cannot be redispersed again. In comparison to bake drying, here, a feasible strategy to achieve mechanically redispersed PEDOT:PSS with the help of freeze-drying process was reported. The redispersed PEDOT:PSS can recover not only the initial characters such as pH, chemical composition, viscosity, and particle size under similar solid contents, but also conductivity and surface morphology of treated films. In addition, the treated film exhibits self-healing properties similar to pristine film in terms of mechanical and electrical properties. This technology enables reuse and overcomes the technical problems of PEDOT:PSS dispersion, realizing real-time processing to meet variable applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号