首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47221篇
  免费   4076篇
  国内免费   2172篇
电工技术   3017篇
技术理论   2篇
综合类   3182篇
化学工业   7478篇
金属工艺   2608篇
机械仪表   2926篇
建筑科学   3850篇
矿业工程   1156篇
能源动力   1228篇
轻工业   3041篇
水利工程   797篇
石油天然气   2946篇
武器工业   345篇
无线电   5714篇
一般工业技术   5690篇
冶金工业   2465篇
原子能技术   633篇
自动化技术   6391篇
  2024年   171篇
  2023年   836篇
  2022年   1278篇
  2021年   2078篇
  2020年   1492篇
  2019年   1237篇
  2018年   1296篇
  2017年   1551篇
  2016年   1401篇
  2015年   1905篇
  2014年   2358篇
  2013年   2880篇
  2012年   2977篇
  2011年   3232篇
  2010年   2927篇
  2009年   2681篇
  2008年   2704篇
  2007年   2549篇
  2006年   2549篇
  2005年   2170篇
  2004年   1491篇
  2003年   1236篇
  2002年   1194篇
  2001年   1067篇
  2000年   1041篇
  1999年   1199篇
  1998年   1000篇
  1997年   873篇
  1996年   854篇
  1995年   650篇
  1994年   571篇
  1993年   394篇
  1992年   352篇
  1991年   270篇
  1990年   202篇
  1989年   175篇
  1988年   146篇
  1987年   114篇
  1986年   78篇
  1985年   56篇
  1984年   59篇
  1983年   26篇
  1982年   35篇
  1981年   25篇
  1980年   19篇
  1979年   14篇
  1977年   7篇
  1976年   7篇
  1973年   5篇
  1970年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
MXene aerogels have shown great potential for many important functional applications, in particular electromagnetic interference (EMI) shielding. However, it has been a grand challenge to create mechanically hyperelastic, air-stable, and durable MXene aerogels for enabling effective EMI protection at low concentrations due to the difficulties in achieving tailorable porous structures, excellent mechanical elasticity, and desired antioxidation capabilities of MXene in air. Here, a facile strategy for fabricating MXene composite aerogels by co-assembling MXene and cellulose nanofibers during freeze-drying followed by surface encapsulation with fire-retardant thermoplastic polyurethane (TPU) is reported. Because of the maximum utilization of pore structures of MXene, and conductive loss enhanced by multiple internal reflections, as-prepared aerogel with 3.14 wt% of MXene exhibits an exceptionally high EMI shielding effectiveness of 93.5 dB, and an ultra-high MXene utilization efficiency of 2977.71 dB g g−1, tripling the values in previous works. Owing to the presence of multiple hydrogen bonding and the TPU elastomer, the aerogel exhibits a hyperelastic feature with additional strength, excellent stability, superior durability, and high fire safety. This study provides a facile strategy for creating multifunctional aerogels with great potential for applications in EMI protection, wearable devices, thermal management, pressure sensing, and intelligent fire monitoring.  相似文献   
992.
Ruddlesden–Popper (RP) faults are well known in oxide perovskites, and are also observed in promising metal halide perovskites. However, the effect of RP faults on optical properties of perovskite has not been systematically investigated. In this study, it is found that RP faults are common planar faults in all-vacuum deposited CsPbBr3-based perovskite polycrystal thin films, and the density of RP planar faults can be greatly increased by non-stoichiometric composition (Cs-rich) as well as reduced dimensionality (quasi-2D) strategies. The photoluminescence (PL) measurement reveals monotonically increasing peak intensities with higher densities of RP planar faults from Cs-rich, quasi-2D to Cs-rich & quasi-2D samples. The corresponding atomic-scale differential phase contrast maps indicate strongly confined charges within the RP planar fault network, which explains well the relationship between PL enhancement and the density of RP planar faults, and offers an alternative pathway for tailoring the optoelectronic properties of perovskite.  相似文献   
993.
The low-earth orbit (LEO) satellite network, composed of a large number of satellite nodes, is a hot research topic at present. Due to the characteristics of the large-scale LEO satellite network, such as many satellite nodes, short orbit period, large dynamic change of topology, and unstable link-state, its communication quality of service (QoS) requirements are difficult to meet. Aiming at this problem, various factors that may affect data transmission are first analyzed. The network link selection problem is modeled as a multi-constraint optimization decision problem, a routing mathematical model based on linear programming (LP) is designed, and its solution is solved. Aiming at the problem of limited onboard computing resources, a multi-object optimization Dijkstra algorithm (MOODA) is designed. The MOODA finds the optimal path according to the comprehensive performance of the link. It solves the problems of poor comprehensive QoS performance and the low degree of load balancing of the paths found by the Dijkstra algorithm. The simulation results show that the paths found by the two algorithms have good QoS, robustness, and load balancing performance.  相似文献   
994.
Covalent organic frameworks (COFs) with various topologies are typically synthesized by selecting and designing connecting units with rich shapes. However, this process is time-consuming and labour-intensive. Besides, the tight stacking of COFs layers greatly restrict their structural advantages. It is crucial to effectively exploit the high porosity and active sites of COFs by topological design. Herein, for the first time, inducing in situ topological changes in sub-chemometric COFs by adding graphene oxide (GO) without replacing the monomer, is proposed. Surprisingly, GO can slow down the intermolecular stacking and induce rearrangement of COFs nanosheets. The channels of D- [4+3] COFs are significantly altered while the stacking of periodically expanded framework is weakened. This not only maximizes the exposure of pore area and polar groups, but also shortens the channels and increases the redox activity, which enables high loading while enhancing host-guest interactions. This topological transformation to exhibit the structural features of COFs for efficient application is an innovative molecular design strategy.  相似文献   
995.
Developing new polymerized small molecular acceptor (PSMA) is pivotal for improving the performance of all-polymer solar cells. On the basis of this newly developed CH-series small molecule acceptors, two PSMAs are reported herein (namely PZC16 and PZC17, respectively). To reduce the molecular torsion caused by the traditional aromatic π-bridges, non-aromatic conjugated units (ethynyl for PZC16 and vinylene for PZC17) are adopted as the linkers and their effect on the photo-physical properties as well as the device performance are systematically investigated. Both polymer acceptors exhibit co-planar molecular conformation, along with broad absorption ranges and suitable energy levels. In comparison with the PM6:PZC16 film, the PM6:PZC17 film exhibits more uniform phase separation in morphology with a distinct bi-continuous network and better crystallinity. The PM6:PZC17-binary-based devices exhibit a satisfactory PCE of 16.33%, significantly higher than 9.22% of the PZC16-based devices. Impressively, PM6:PZC17-based large area device (ca. 1 cm2) achieves an excellent PCE of 15.14%, which is among the top performance for reported all-polymer solar cells (all-PSCs).  相似文献   
996.
Photoactivatable agent is a powerful tool in biomedicine studies due to high-precision spatiotemporal control of light. However, those previously reported agents generally suffer from short wavelength, fluorescence self-quenching effect, and the lack of photosensitizing property, which severely restrict their practical applications. To address these issues, molecular engineering of 1,4-dihydropyridine derivatives is conducted to obtain an optimized agent, namely TPA-DHPy-Py, which exhibits low oxidation potential, high photoactivation efficiency, and excellent type I/II combined photodynamic activity. Concurrently, its photoactivated counterpart is featured by aggregation-induced near-infrared emission and remarkable reactive oxygen species (ROS) production efficiency. Upon photoactivation, TPA-DHPy-Py is capable of precisely identifying cancer cells from co-culturing cancer cells and normal cells without the assistance of any extra targeting units, and in situ monitoring lipid droplets and endoplasmic reticulum alteration under ROS stress, as well as achieving fluorescent visualization of tumor in vivo with supremely high imaging contrast. Furthermore, the unprecedented performance on photodynamic cancer therapy is demonstrated by the significant inhibition of tumor growth. Therefore, the photoactivatable TPA-DHPy-Py with dual-organelle-targeted and excellent photodynamic activity associated with self-monitoring ability is highly promising for cancer theranostics in clinical trials.  相似文献   
997.
The accumulation of reactive oxygen species (ROS) and minimal osteogenic raw material in the osteoporotic bone microenvironment greatly inhibits the activity of osteoblasts. Herein, it is originally proposed to construct a biomatrix multifaceted bone microenvironment amendment -Mineralized zippered G4-Hemin DNAzyme hydrogel (MDH)-to improve osteoporotic osteogenic capacity and promote high-quality bone defect repair. The programmed design of the rolling circle amplified DNA hydrogel synthesis system allows the introduction of massive amounts of zippered G4-Hemin DNAzyme in MDH. The zippered G4-Hemin DNAzyme highly mimics the tight catalytic configuration of horseradish peroxidase and exerts excellent enzyme-like activity with considerable ROS molecule scavenging ability. In addition, the DNA amplification by-product pyrophosphate is ingeniously employed as a sufficient phosphorus source, thus constituting an autonomous mineralization system for waste reuse through the introduction of pyrophosphate hydrolase and calcium ions, which deposits in MDH as an osteogenic raw material and addresses the challenge of DNA hydrogel bio-application stability. The remarkable in vitro and in vivo outcomes demonstrate that MDH can effectively improve the oxidative stress status of osteoblasts, restore the balance of mitochondrial membrane potential, and reduce apoptosis, ultimately demonstrating superior osteogenic capacity.  相似文献   
998.
Due to the surface inhomogeneity of the solid supports, direct growth of uniform bimetallic nanoparticles (NPs) with controllable structure and size thereon is particularly challenging. Herein, a surface-confinement strategy is reported to directly prepare ultrafine bimetallic Pt M NPs (MFe, Cu, and Co) with structure of core-shell or intermetallic compounds on an N functionalized carbon support (NC). It is found that the N species of NC support can atomically disperse metal cations of precursors, which largely renders uniform nucleation and growth of bimetallic NPs and fine structure modulation of them. In another regard, metal transfer is confined to a narrow region on NC via N-mediation, hence greatly favoring localized particle growth and formation of ultrafine bimetallic NPs. Remarkably, the ultrafine 3.1 ± 0.7 nm intermetallic Pt3Fe NPs on NC displayed excellent catalytic activity and durability toward electrochemical hydrogen evolution reaction.  相似文献   
999.
Due to the complex spatial-temporal pathophysiology of spinal cord injury (SCI), effective modulation of SCI-specific inflammatory pathogenesis to achieve desirable therapeutic effects on functional recovery still remains challenging. Herein, cell-enhanced photocrosslinked silk fibroin hydrogels with extracellular matrix-mimicking cues of mechanical properties and RGD (Arg-Gly-Asp) signals are gelled in situ to fill the lesion site to modulate injury-induced neuroinflammation and promote neurite regrowth after SCI. The bionic hydrogel system provides biomimetic mechanical cues to promote neuronal differentiation of neural stem/progenitor cells (NPCs) and neurite growth by activating YAP nuclear expression. Importantly, favored by the strong capacity of silk fibroin hydrogels on macrophage/microglia recruitment, NPCs encapsulated hydrogel (NPCs@SFRGD0.1) effectively promotes recruited macrophages/microglia to M2 polarization in the lesion site by releasing S100A4 and thereby remodels the inflammatory microenvironment after SCI. Moreover, NPCs@SFRGD0.1 successfully reduces glial scar formation and accelerates corticospinal tract axon regrowth to improve locomotor recovery. Overall, this work contributes to illustrating the therapeutic mechanism of NPCs development based biomaterial therapies on modulating inflammatory microenvironment and this NPCs enhanced silk fibroin hydrogel provides a promising therapeutic strategy for SCI.  相似文献   
1000.
Compared to conventional photothermal therapy (PTT) which requires hyperthermia higher than 50 °C, mild-temperature PTT is a more promising antitumor strategy with much lower phototoxicity to neighboring normal tissues. However, the therapeutic efficacy of mild-temperature PTT is always restricted by the thermoresistance of cancer cells. To address this issue, a supramolecular drug nanocarrier is fabricated to co-deliver nitric oxide (NO) and photothermal agent DCTBT with NIR-II aggregation-induced emission (AIE) characteristic for mild-temperature PTT. NO can be effectively released from the nanocarriers in intracellular reductive environment and DCTBT is capable of simultaneously producing reactive oxygen species (ROS) and hyperthermia upon 808 nm laser irradiation. The generated ROS can further react with NO to produce peroxynitrite (ONOOˉ) bearing strong oxidization and nitration capability. ONOOˉ can inhibit the expression of heat shock proteins (HSP) to reduce the thermoresistance of cancer cells, which is necessary to achieve excellent therapeutic efficacy of DCTBT-based PTT at mild temperature (<50 °C). The antitumor performance of ONOOˉ-potentiated mild-temperature PTT is validated on subcutaneous and orthotopic hepatocellular carcinoma (HCC) models. This research puts forward an innovative strategy to overcome thermoresistance for mild-temperature PTT, which provides new inspirations to explore ONOOˉ-sensitized tumor therapy strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号