首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64068篇
  免费   6203篇
  国内免费   3281篇
电工技术   4647篇
技术理论   7篇
综合类   4435篇
化学工业   10139篇
金属工艺   3775篇
机械仪表   3808篇
建筑科学   5578篇
矿业工程   1642篇
能源动力   1915篇
轻工业   4264篇
水利工程   1170篇
石油天然气   3462篇
武器工业   547篇
无线电   7805篇
一般工业技术   7823篇
冶金工业   2691篇
原子能技术   831篇
自动化技术   9013篇
  2024年   351篇
  2023年   1194篇
  2022年   1991篇
  2021年   2838篇
  2020年   2023篇
  2019年   1670篇
  2018年   1884篇
  2017年   2127篇
  2016年   1921篇
  2015年   2650篇
  2014年   3155篇
  2013年   3799篇
  2012年   4066篇
  2011年   4324篇
  2010年   3899篇
  2009年   3638篇
  2008年   3760篇
  2007年   3576篇
  2006年   3578篇
  2005年   3009篇
  2004年   2105篇
  2003年   1927篇
  2002年   1979篇
  2001年   1778篇
  2000年   1530篇
  1999年   1651篇
  1998年   1229篇
  1997年   1086篇
  1996年   1037篇
  1995年   840篇
  1994年   698篇
  1993年   508篇
  1992年   455篇
  1991年   329篇
  1990年   224篇
  1989年   185篇
  1988年   162篇
  1987年   101篇
  1986年   66篇
  1985年   58篇
  1984年   35篇
  1983年   23篇
  1982年   33篇
  1981年   18篇
  1980年   20篇
  1979年   8篇
  1978年   2篇
  1959年   3篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
991.
Li4Ti5O12 (LTO) attracts great interest due to the “zero strain” during cycles but the poor electronic and ionic conductivity critically impede the practical application. Herein, we report a synergy strategy of tuning localized electrons to shift Fermi level and band gap by Mg/Zr co-doping and oxygen vacancy incorporation, which significantly improves Li+ and electronic transport. More importantly, the intrinsic synergistic mechanism has been revealed by neutron diffraction, X-ray absorption spectra, and first-principles calculations. The “elastic effect” of lattice induced by Mg/Zr co-doping allows LTO to accommodate more oxygen vacancies to a certain degree without a severe lattice distortion, which largely improves the electronic conductivity. Mg/Zr co-doping and oxygen vacancy incorporation effectively enhanced the dynamic characteristics of LTO electrode, achieving the excellent rate performance (90 mAh/g at 20C) and cycle stability (96.9% after 500 cycles at 10C). First-principles calculations confirm Fermi level shifts to the conduction band, and the band gap becomes narrowed due to the synergistic modulation, and the intrinsic mechanism of the enhanced electronic and Li-ion conductivity is clarified. This study offers some insights into achieving the fast Li+ insertion/extraction by tuning the crystal and electronic structure with lattice doping and oxygen vacancy engineering.  相似文献   
992.
The utilization and popularization of biodiesel are always limited by its poor cold flow properties. Both bio-based alcohol and diesel from direct coal liquefaction (DDCL) has potential to enhance the cold flow properties of biodiesel. In this study, ternary blends of waste cooking oil biodiesel (BWCO) with DDCL and bio-based ethanol (ET) or 1-butanol (BT) were conducted to improve the cold flow properties of biodiesel. The pour point (PP), cold filter plugging point (CFPP), and cloud point (CP) of BWCO-ET, BWCO-BT, and BWCO-DDCL binary blends, and BWCO-ET-DDCL and BWCO-BT-DDCL ternary blends were comparatively assessed. Ternary phase diagrams were also applied to analyze the blending effect of the three components on the cold flow properties of biodiesel. Results showed that both DDCL, ET, and BT can remarkably enhance the cold flow properties of BWCO. When the ternary blends contain 20 vol.% BWCO and less than 40 vol.% ET or BT, DDCL together with ET or BT exerted positive effects on enhancing the low-temperature flow properties of BWCO, especially on the CP and CFPP. For ternary blends in 20:10:70 blending ratio, BWCO-BT-DDCL exhibited the lowest PP, CFPP, and CP of −23, −19, and −17°C, respectively. The crystallization behavior and crystal morphology of blended fuels are also observed via a polarizing optical microscope, and find that DDCL together with BT in biodiesel can effectively retard the aggregation of large crystals and inhibit crystals growth.  相似文献   
993.
Bioglass (BG) possesses excellent bioactivity and has been widely used in the manufacture of biomaterials. In this study, a composite with different surface bioactivity was fabricated via in situ melting polymerization by incorporating BG and poly(amino acid) (PAA) at a suitable ratio. The structure of the composite was characterized by Fourier transform infrared spectroscopy and XRD. The compressive strength of the BG/PAA composites was 139 MPa (BG:PAA = 30:70). The BG/PAA composites were degradable, and higher BG in composite showed higher weight loss after 4 weeks of incubation in simulated body fluid. In addition, the BG/PAA composite maintained adequate residual compressive strength during the degradation period. The SEM results showed the differences in surface bioactivities of the composites directly, and 30BG/PAA composite showed thicker apatite layer and higher Ca/p than 15BG/PAA. in vitro MG-63 cell culture experiments showed that the composite was noncytotoxic and thus allows cells to adhere, proliferate, and differentiate. This indicates that the composite has good biocompatibility. The implantations in the bone defects of rabbits for 4 and 12 weeks were studied. The composites had good biocompatibility and were capable of guiding new bone formation without causing any inflammation. The composite may be successfully used in the development of bone implants.  相似文献   
994.
The packing pattern of two-dimensional (2D) sheet-like fillers in membranes is relatively random, leading to the unfavorable permeability from tortuous diffusion pathway. A new strategy that using prestructured materials with uniform channels as fillers was proposed. In this work, Ti3AlC2 is etched to prepare multilayered MXene (m-MXene), the channels aggregate as a whole unit, ensure the impossibility of ineffective packing compared with traditional individual sheets, largely facilitating the selective permeation. Then, the m-MXene/Poly (amide-6-b-ethylene oxide) (Pebax) MMMs are synthesized. SEM images demonstrate the accordion shaped structure of filler, which is the multi-channels laminates. Furthermore, the results of gas permeation test exhibit enhanced performance of m-MXene/Pebax MMMs. MMM with 0.5 wt.% m-MXene behaved best, CO2 permeability of 86.22 Barrer as well as CO2/N2 selectivity of 104.85, transcending the Robeson upper bound (2008). Having distinct enhancement for CO2 separation, the m-MXene/Pebax MMMs in this work offer prospective practical applications.  相似文献   
995.
Synthesized by the reaction between α-cellulose and m-tolyl isocyanate (MTI), cellulose carbamate (CC) was blended with polyvinyl chloride (PVC) to fabricate substrates for thin-film composite (TFC) forward osmosis (FO) membranes. The introduction of CC into substrates improved both membrane structure and performance. The substrates exhibited higher porosity and hydrophilicity, and better connective pore structure; while rejection layer exhibited better morphology but limited cross-linked degree decrease after the introduction of CC. According to the results, the CC blend ratio of 10% was the optimal ratio. With this blend ratio, the TFC-10 membrane presented favorable water permeability (1.86 LMH/bar) and structure parameter (337 μm), which resulted in excellent FO performance (water flux with a value of 40.40 LMH and specific salt flux with a value of 0.099 g/L under rejection layer faces draw solution [DS] mode when 1 M NaCl and deionized water were utilized as DS and feed solution). In addition, the TFC-10 membrane showed good water flux and low-sulfate ion leakage in the potential application of brackish water desalination.  相似文献   
996.
A facile method to synthesize nanoscale graphene oxide (GO) with controllable interlayer spacing was carried out using two-step oxidation process and much less acid to improve the efficiency of the oxidation. The X-ray diffraction results demonstrated that GO had been successfully prepared from graphite because of disappearance of characteristic peaks of pristine graphite at about 2θ = 26.5° along with appearance of a sharp major peak of GO at about 2θ = 9.4°. The increased basal spacing d001 of as-prepared GO could reach as high as 9.39 Å, suggesting higher degree of oxidation than that prepared by the classical Hummers' synthesis, and characterization results from Fourier transform infrared spectrometer, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy further confirmed this conclusion. The influence of GO on anti-corrosion performance of nanocomposite coatings composited with the 2,5-dimethoxyaniline (DMA) conductive polymer was examined via potentiodynamic polarization curve tests in 3.5 wt% NaCl aqueous solution. The results demonstrated that the incorporation of GO significantly decreased the corrosion current density (icorr = 2.62 μA/cm2) in the case of GO-PDMA coating, reflecting excellent physical isolation of GO and its synergistic effect with PDMA against the infiltration of water and corrosive electrolyte.  相似文献   
997.
This study presents a self-designed foaming apparatus and routes to manufacture foamed isotactic polypropylene (iPP) blends with uniform and dense cells, using styrene-ethylene-butadiene-styrene (SEBS) block copolymer as toughening additive. The addition of SEBS can clearly enhance the impact strength of solid iPP, iPP blends with a 20 wt% SEBS has obtained high notched impact strength of 75 kJ/m2, which is ca. 16 times larger than that of neat iPP. Relatively fine microcellular iPP-SEBS foams with the average cell size of several micrometers, and the cell density of 109 cells/cm3 were fabricated using a batch foaming procedure. Moreover, using our self-designed mold and compression foaming method, iPP-SEBS foams with balanced mechanical properties were produced. With the increasing of SEBS, tensile strength and flexural strength were slightly decreased, but the impact strength was increased clearly. The balanced mechanical properties between stiffness and toughness were achieved after compression foaming.  相似文献   
998.
Aiming to enhance the carbon fiber (CF)/resin interfacial adhesion, this report describes the novel application of sodium citrate (SC) as an auxiliary reducing agent and surface regulator to control the morphology of nano-manganese dioxide (MnO2) on the CF surface. The composites were fabricated by means of controlling the molar concentration ratio of SC to Mn source (0:1, 1:3, 1:2, and 1:1) in hydrothermal synthesis. The results reveal that MnO2 nanosheets on the CF surface become denser as the concentration of SC is 1/3 of Mn source, which makes advance to the surface roughness and surface energy of CF. Simultaneously, the tensile strength of as-prepared composite is increased by 52.8%. The homologous friction coefficient tends to be high and stable and the wear volume is significantly reduced by 63.8 and 26.5% under the applied loads of 3 and 5 N in contrast with the original composites prepared without SC. As a result, it can be inferred that SC plays a crucial role in enhancing the interfacial bonding strength between the CF and matrix, providing insights into the interface control of CF-reinforced resin matrix composites.  相似文献   
999.
Mixed matrix membranes (MMMs) were prepared by solvent evaporation method using Pebax-1074 polymer as matrix and inorganic zeolite SAPO-23 as dopant. The morphology, surface functional groups, microstructure, thermal stability, and separation performance of MMMs were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and gas permeation, respectively. The effects of dopant loading amount, permeation temperature, and permeation pressure on the structure and properties of MMMs were investigated. The results showed that the introduction of SAPO zeolite reduced the crystallinity of the MMMs and improved the CO2/N2 selectivity. Under the conditions of 30°C and 0.15 MPa, the MMMs prepared by incorporating with 5% SAPO zeolite in content exhibited the highest CO2/N2 selectivity of 72.0 together with the CO2 permeability of 98.2 Barrer.  相似文献   
1000.
In this study, biomimetic sodium alginate (SA)/silk fibroin (SF) scaffolds were successfully fabricated by supercritical CO2 technology. The SA/SF scaffolds exhibited an interconnected porous and extracellular matrix (ECM)-like nanofibrous structures. Moreover, the SA microparticles were embedded in the SF scaffolds. Increasing the content of SA microparticles could improve tensile strength and compressive strength of the SF scaffolds and reduce the porosity of the SF scaffolds. The addition of the SA microparticles could also regulate the degradation rate of the SA/SF scaffolds. Furthermore, the results of in vitro biocompatibility evaluation, indicated that the SA/SF scaffolds exhibited no obvious cytotoxicity and higher cell adhesion ability and were more favorable for L929 fibroblasts proliferation than pure SF scaffolds. Therefore, the SA/SF scaffolds with ECM-like nanofibrous and interconnected porous structure have potential application in skin tissue engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号