首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81232篇
  免费   177篇
  国内免费   56篇
电工技术   1851篇
综合类   89篇
化学工业   10246篇
金属工艺   7233篇
机械仪表   6127篇
建筑科学   1453篇
矿业工程   816篇
能源动力   715篇
轻工业   1250篇
水利工程   1170篇
石油天然气   1538篇
无线电   7779篇
一般工业技术   21426篇
冶金工业   6420篇
原子能技术   1156篇
自动化技术   12196篇
  2018年   9320篇
  2017年   10013篇
  2016年   5189篇
  2015年   589篇
  2014年   106篇
  2013年   72篇
  2012年   2898篇
  2011年   9161篇
  2010年   8823篇
  2009年   7497篇
  2008年   7209篇
  2007年   9467篇
  2006年   86篇
  2005年   4042篇
  2004年   2252篇
  2003年   1851篇
  2002年   728篇
  2001年   76篇
  2000年   156篇
  1999年   31篇
  1998年   23篇
  1997年   10篇
  1996年   19篇
  1995年   12篇
  1994年   35篇
  1993年   29篇
  1992年   20篇
  1991年   24篇
  1988年   9篇
  1969年   57篇
  1968年   129篇
  1967年   119篇
  1966年   145篇
  1965年   123篇
  1964年   80篇
  1963年   64篇
  1962年   66篇
  1961年   71篇
  1960年   89篇
  1959年   62篇
  1958年   76篇
  1957年   128篇
  1956年   119篇
  1955年   139篇
  1954年   153篇
  1953年   8篇
  1952年   11篇
  1951年   16篇
  1950年   13篇
  1949年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The full potential linearized augmented plane wave method of density functional theory has been used to investigate the structural, electronic, magnetic and thermoelectric properties of cubic perovskites BaVO3 and LaVO3. The ferromagnetic ground state has been found to be stable by comparing the total energies of non-spin-polarized and spin-polarized calculations performed for optimized unit cells. For both compounds, the bond length and tolerance factor are also measured. From the band structures and density of states plots, it is found that both compounds are half-metallic. We found that the presence of V at the octahedral site of these perovskites develops exchange splitting through p-d hybridization, which results in a stable ferromagnetic state. The observed exchange splitting is further clarified from the magnetic moment, charge and spin of the anion and cations. Finally, we also presented the calculated thermoelectric properties of these materials, which show that half-metallic BaVO3 and LaVO3 materials are potential contenders for thermoelectric applications.  相似文献   
992.
Basing on electron spin resonance (ESR) data for Bi2Te3 doped by Mn ions we argue that this compound can be inhomogeneous and consists of two components with the different structures. Its main phase Bi 2?x Mn x Te 3 is intertwined with the microscopical inclusions of MnBi phase. The integral volume of these intermetal clusters is less than 1 % but nevertheless they exert the serious impact on the dynamic magnetic properties of the entire system. These inclusions are ferromagnetic with the Curie temperature of 630 K, while the main bulk phase Bi 2?x Mn x Te 3 has x= 0.05 orders at T c= 10 K (qualitatively this twophase picture is valid not only for this given x). Below this temperature two ferromagnetic phases coexist. Since the integral spontaneous polarization in MnBi phase is averaged out due to its random orientations in different clusters the time-reversal symmetry of Bi 2Te 3 doped by Mn ions is violated only at the low-temperature ferromagnetic transition.  相似文献   
993.
Doped tungstates exhibit superconductivity as indicated to occur mainly at the surface of the WO3 grains present. To generate bulk 3D superconducting material of doped tungstates, it is proposed to employ the recently discovered UV-generated synthesis of complex oxides from mixed simple oxides by illuminating the mixture with ultraviolet light at modest temperatures, as found in Shengelaya’s group in Tbilisi, and to generate a percolating 3D network of 2D superconducting sheets using the smallest basis oxides as the starting material. The latter procedure was demonstrated recently to be very effective in a collaboration with the present author (Daraselia et al., J. Appl. Phys. 121, 145104, 2017). If this proposition is successful, it would establish the doped tungstates as a second group of HTS besides the copper oxides that could be chosen for certain applications.  相似文献   
994.
The present study introduces an analytical–computational model to simulate the effects of different simultaneous aspects on the behavior of nanobeams. The first one deals with the space nonlocality interaction and taking into account the microstructure effects, which has been formulated by using the nonlocal couple-stress elasticity. The second factor deals with the memory-dependent effect and has been investigated in the framework of linear viscoelasticity theory. It is the first time to apply the coupled effects of the microstructure and long-range interactions between the particles, to reflect the size-dependency of viscoelastic structures. Bernoulli–Euler nanobeam is taken as a vehicle to present the details of the proposed model. Eringen nonlocal elasticity and the modified couple-stress theory are used to formulate the two phenomena of long-range cohesive interaction and the microstructure local rotation effects, respectively. Boltzmann superposition viscoelastic model, endowed by Wiechert series, is used to simulate the linear behavior of isotropic, homogeneous and non-aging viscoelastic materials. The extended Hamilton’s principle is applied to formulate the analytical model of mechanical behavior of the nonlocal couple-stress nanobeam. The model has been verified and some results are compared with those published in the literature and a good agreement has been obtained. It is shown that the material-length scale parameter, nonlocal parameter, viscoelastic relaxation time and length-to-thickness ratio have a significant effect on the bending response of viscoelastic nanobeams with various boundary conditions.  相似文献   
995.
We have discussed the restoration mechanism of the spontaneous symmetry breaking, C 2 spatial symmetry breaking mechanism, and spin glass-like mechanism in high- T c cuprates from the standpoint of field-theoretical formula. It is suggested strongly that quantized massive gauge fields, which contain effects of spin fluctuations, charge fluctuations, and phonons, might be mediating Cooper pairing in high- T c cuprates.  相似文献   
996.
Coplanar Al/graphene/Al junctions fabricated on the same graphene sheet deposited on silicon carbide (SiC), show robust Josephson coupling at subKelvin temperature, when the separations between the electrodes is below 400 nm. Remarkably, a hysteretic Critical State sets in when ramping an orthogonal magnetic field, with a sudden collapse of the Josephson critical current I c when turning the field on, and a revival of I c when inverting the sweep. Similar hysteresis can be found in granular superconducting films which may undergo the Berezinskii-Kosterlitz-Thouless transition. Here, we give quantitative arguments to prove that this odd behavior of the magnetoconductance gives evidence for an incipient Berezinskii-Kosterlitz-Thouless transition with drift and pinning of fluctuating free vortices induced by the current bias.  相似文献   
997.
An effort was made to develop semiconductor oxide-based room temperature dilute magnetic semiconductor (DMS) thin films based on wide band gap and transparent host lattice with transition metal substitution. The Sn\(_{\mathrm {1}-x}\)Ni\(_{x}\textit {O}_{\mathrm {2}}\) (\(x\,= \mathrm {0.00, 0.03, 0.05, 0.07, 0.10, and \,0.15}\)) thin film samples were prepared on glass substrates by flash evaporation technique. All the samples were shown single phase crystalline rutile structure of host SnO\(_{\mathrm {2}}\) with dominant (110) orientation. The Ni substitution promotes reduction of average crystallite size in SnO\(_{\mathrm {2}}\) as evidenced from the reduction of crystallite size from 40 (SnO\(_{\mathrm {2}}\)) to 20 nm (Sn\(_{\mathrm {0.85}}\)Ni\(_{\mathrm {0.15}}\textit {O}_{\mathrm {2}}\)). In the energy dispersive spectra as well as X-ray photoelectron spectra of all the samples show, the chemical compositions are close to stoichiometric with noticeable oxygen deficiency. The crystalline films were formed by coalescence of oval-shaped polycrystalline particles of 100 nm size as evidenced from the electron micrographs. The energy band gap of DMS films decreases from 4 (SnO\(_{\mathrm {2}}\)) to 3.8 eV (x \(=\) 0.05) with increase of Ni content. The magnetic hysteresis loops of all the samples at room temperature show soft ferromagnetic nature except for SnO\(_{\mathrm {2}}\) film. The SnO\(_{\mathrm {2}}\) films show diamagnetic nature and it converts into ferromagnetic upon substitution of 3 % Sn\(^{\mathrm {4+}}\) by Ni\(^{\mathrm {2+}}\). The robust intrinsic ferromagnetism (saturation magnetization, 21 emu/cm\(^{\mathrm {3}}\)). Further increase of Ni content weakens ferromagnetic strength due to Ni-O antiferromagnetic interactions among the nearest neighbour Ni ions via O\(^{\mathrm {2-}}\) ions. The observed magnetic properties were best described by bound magnetic polarons model.  相似文献   
998.
In this work, we studied in detail the magnetic and magnetocaloric properties of the La0.7Ca0.2Ba0.1MnO3 compound according to the phenomenological model. Based on this model, the magnetocaloric parameters such as the maximum of the magnetic entropy change ΔS M and the relative cooling power (RCP) have been determined from the magnetization data as a function of temperature at several magnetic fields. The theoretical predictions are found to closely agree with the experimental measurements, which make our sample a suitable candidate for refrigeration near room temperature. In addition, field dependences of \({{\Delta } S}_{\mathrm {M}}^{\max }\) and RCP can be expressed by the power laws \({\Delta S}_{\mathrm {M}}^{\max }\approx a\)(μ 0 H) n and RCP ≈b(μ 0 H) m , where a and b are coefficients and n and m are the field exponents, respectively. Moreover, phenomenological universal curves of entropy change confirm the second-order phase transition.  相似文献   
999.
We report on the growth and magnetic properties of La2/3Sr1/3MnO3/SrTiO3/CoFe2 hard-soft magnetic systems prepared by pulsed laser deposition on SrTiO3(001) substrates. In situ reflection high-energy electron diffraction along the [100]SrTiO3 substrate azimuth and atomic force microscopy measurements reveal that La2/3Sr1/3MnO3 and SrTiO3 grow both in a three dimensional mode and that the roughness of the lower and upper magnetic/non-magnetic interfaces ranges between 2 and 4 Å. Cross-section transmission electron microscopy observations show that the layers are continuous, with an homogeneous thickness, and that the interfaces are mostly sharp and correlated. The magnetization curves show a two step reversal of the magnetization, with very distinct coercive fields. A small anisotropy is observed for the CoFe2 layer with an in plane easy magnetization axis along the [110]SrTiO3 direction. Minor magnetization loops indicate that the coupling between the magnetic layers is negligible.  相似文献   
1000.
Rare-earth ions (RE3+)-doped Ni-Zn ferrite nanoparticles with a structural formula of Ni0.5Zn0.5Fe1.8RE0.2O4 (RE3+ = Nd, Ce, La and Pr) were synthesized at room temperature by a sol-gel auto-combustion method. The structural and magnetic properties of Ni-Zn ferrite samples were carried out by XRD, vibrating sample magnetometer (VSM), field emission scanning electron microscopy (FE-SEM) and FT-IR spectroscopy. XRD pattern of Ni-Zn ferrite revealed that all the diffraction planes are in agreement with cubic spinel phase and the addition of Fe2O3 phase was also observed. In the case of RE ions-doped Ni-Zn ferrite in addition to the Fe2O3 phase, very low intensity peaks corresponding to some secondary phase are also present. The average crystallite sizes were found to be from 42 to 56 nm using the Scherer formula. The lattice constant (a) values are gradually decreased from 8.378 to 8.349 Å with different substitutions of RE3+ ions in the Ni-Zn ferrite samples. VSM analysis revealed that saturation magnetization values are decreased and coercivity values are increased with substitution of different RE3+ ions. FE-SEM images exhibits that particles are spherical in shape. FT-IR interpretation revealed that two main metal oxygen bands (564 and 411 cm?1) are observed in all the substituted Ni-Zn ferrite samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号