全文获取类型
收费全文 | 111篇 |
免费 | 1篇 |
国内免费 | 9篇 |
专业分类
综合类 | 6篇 |
化学工业 | 5篇 |
金属工艺 | 43篇 |
矿业工程 | 2篇 |
轻工业 | 4篇 |
无线电 | 21篇 |
一般工业技术 | 25篇 |
冶金工业 | 13篇 |
自动化技术 | 2篇 |
出版年
2022年 | 1篇 |
2021年 | 1篇 |
2019年 | 4篇 |
2018年 | 1篇 |
2017年 | 2篇 |
2016年 | 2篇 |
2015年 | 5篇 |
2014年 | 9篇 |
2013年 | 3篇 |
2012年 | 9篇 |
2011年 | 9篇 |
2010年 | 4篇 |
2009年 | 8篇 |
2008年 | 4篇 |
2007年 | 2篇 |
2006年 | 8篇 |
2005年 | 3篇 |
2004年 | 1篇 |
2003年 | 3篇 |
2002年 | 5篇 |
2001年 | 3篇 |
2000年 | 7篇 |
1999年 | 11篇 |
1998年 | 4篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1993年 | 4篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1987年 | 1篇 |
排序方式: 共有121条查询结果,搜索用时 78 毫秒
71.
72.
73.
采用有机泡沫基体浸浆干燥烧结法制备了一种泡沫铁材料,其产品的孔隙主要是构成宏观网状或泡沫状结构且尺寸为0.5~2.0mm的主孔,孔隙之间相互连通。在主孔孔壁或孔棱上还存在尺寸远小于主孔的小孔,其数量和大小可以由烧结温度加以调控。这些小孔可以进一步提高孔隙之间的连通性。以上述工艺制备泡沫铁为基础,通过与经表面处理的金属面板热扩散结合进一步获得了一种泡沫铁夹层结构,其中芯部即为泡沫铁,壳层为不锈钢金属面板。该夹层结构的芯部与金属面板为冶金结合。制备泡沫铁的工艺所用料浆由铁粉、添加剂和无毒性有机黏结剂组成,烧结温度在1100~1400℃之间。 相似文献
74.
刘培生 《稀有金属材料与工程》2005,34(2):205-207
在已有的泡沫金属双向名义载荷强度与孔隙率关系的基础上,分析了该材料的双向等应力拉伸加载情形,探讨了泡沫金属在该情形下发生破坏的力学行为。研究结果显示,以“八面体模型”推导出来的有关力学关系,较好地表征了该材料在双向等载条件下的行为特点。 相似文献
75.
穿孔板组合对电沉积泡沫镍吸声性能的影响 总被引:1,自引:0,他引:1
目前由穿孔板和多孔金属组成的多层吸声结构的吸声性能还没有充分的研究。本研究提出了一种由穿孔板和吸声材料进行多层穿插叠合的组合吸声结构,通过调整多孔金属吸声材料的叠合层厚度,改变穿孔板位置和数量的方法控制吸声效果。对测试结果与传递矩阵数学模型拟合计算的结果进行对比分析,从理论上探讨其吸声原理并比较其吸声性能的优劣。结果表明:用该方法可以极大提升泡沫镍材料的吸声效果,在这种组合结构中以加入三层穿孔板为最佳匹配,最佳匹配与传递矩阵模型公式的计算数据基本吻合。 相似文献
76.
以高孔率的三维网状多孔金属(即开口多孔金属)为研究对象,建立其简化结构失效模型。分析多孔构件在扭转和剪切载荷形式作用下由于孔棱发生拉断、剪切和屈曲而引起的失效模式,系统地研究上述两种承载条件下这类多孔体构件受到载荷作用而导致孔棱失效时名义载荷与孔率的数理关系。在此基础上,进一步研究此类材料在不同载荷作用下发生各种孔棱失效模式的载荷条件。结果表明,这些失效模式与多孔金属的材质指标、孔率及承受的载荷大小等因素均有关系,这种关系也可以进行相应的具体数理表征。 相似文献
77.
78.
79.
为更全面掌握三维网状多孔材料在工程应用中的安全承载问题,分析了各向同性的该类材料在三向载荷(多向载荷)作用下的力学性能.在其结构简化的基础上,提出了该类材料在三向载荷作用下相应的承载力学模型,其中三向载荷中的任何一个载荷都可以任意为拉伸和压缩.运用这一模型,可以判断当该类材料在承受上述载荷条件时是否会发生破坏,其用来判断的材料固有指标即是多孔体的孔率,该指标是多孔材料最基本的参量. 相似文献
80.
通过模压法成功制备轻质多孔陶瓷吸声材料, 采用JTZB吸声系数测试系统研究造孔剂粒径、含量以及样品厚度对多孔陶瓷材料吸声性能的影响。结果表明: 造孔剂含量为50vol%时, 大孔径多孔陶瓷吸声性能优于小孔径多孔陶瓷; 随着造孔剂含量的增加, 第一吸收峰从低频向高频移动, 峰值从0.41增加到0.82, 孔隙率过高和过低都不利于提高材料吸声性能; 样品厚度从10 mm增加到30 mm, 第一吸收峰逐渐向着低频方向移动; 造孔剂含量为60vol%, 样品厚度为20 mm时, 样品整体具有优异吸声性能, 并逐层在其背后加入空腔发现, 随着空腔层数的增加, 样品的第一吸收峰从高频向低频移动, 平均吸声系数逐渐增大。 相似文献