首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   0篇
  国内免费   1篇
综合类   17篇
金属工艺   4篇
机械仪表   62篇
武器工业   5篇
一般工业技术   4篇
原子能技术   2篇
  2023年   6篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   5篇
  2013年   3篇
  2011年   2篇
  2010年   2篇
  2009年   5篇
  2008年   7篇
  2007年   1篇
  2006年   2篇
  2005年   7篇
  2004年   2篇
  2003年   6篇
  2002年   9篇
  2001年   8篇
  2000年   1篇
  1998年   5篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
11.
给出了轴向车削内孔理论粗糙度的数学模型,分析了主要工艺参烽对工件理论粗糙度的影响,并完全可用轴向车铣内孔实现孔的精加工。  相似文献   
12.
正交车铣细长杆的动力学分析   总被引:1,自引:1,他引:0  
根据等截面梁横向振动理论,建立了正交车铣加工细长杆的动力学模型,并根据车铣切削力的特点,建立了切削力的简化模型。分析了强迫振动的动力学响应以及振动过程中切削厚度变化对强迫振动的影响,并利用Matlab软件对其进行了模拟。模拟结果表明,在正交车铣加工细长杆过程中,振动系统可以对强迫振动起到一定的抑制作用。  相似文献   
13.
干式高速车铣铝合金已加工表面形成机理研究   总被引:8,自引:0,他引:8  
高速车铣加工是一种新的先进加工技术,可望在干式条件下实现回转体零件的高速切削。本文主要研究干式条件下高速车铣铝合金时已加工表面的形成机理及影响因素。  相似文献   
14.
正交车铣加工的回转体表面由铣刀与工件的复合相对运动形成,其形成机理独特,多个参数影响其表面微观形貌。为研究切削参数对正交车铣回转体表面微观残留的影响,基于UG建立了正交车铣回转体表面的仿真加工方法,并通过Vericut构建了虚拟五轴车铣加工环境,由此仿真研究了周向每齿进给量对正交车铣回转体表面微观残留的影响,发现已加工表面微观残留高度随周向每齿进给量增加显著增大。  相似文献   
15.
TiN涂层刀具高速车铣切削性能及磨损机理   总被引:5,自引:0,他引:5  
实验研究了高速车铣D60钢时TiN涂层刀具的切削性能和磨损机理.结果表明,在水溶性冷却液浇注冷却条件下,高频交变热应力较大,涂层剥落较快,TiN涂层刀具的耐磨性较差,不能适应切削加工的要求.与此相反,干式切削时,高频交变热应力较小,虽在涂层表面有微裂纹产生,但涂层不易剥落,刀具耐磨性较好,可进行长时间稳定切削.干式切削过程中,由于机械冲击,在刀刃处产生的微小凹缺陷,是造成刀具磨损的主要原因.不论湿式切削还是干式切削,涂层剥落后,切削区产生的瞬时热量聚集将使基体粘结相软化,进而导致硬质相颗粒脱落和基体的剧烈磨损.  相似文献   
16.
17.
一种弱刚度复杂形状传动箱体的有限元分析   总被引:2,自引:1,他引:2  
通过对一种弱刚度复杂形状传动箱体轴承孔铣削加工的结构静力学分析和有限元计算,得到一系列的位移等值曲线及分析结果,从而为该传动箱体加工过程中一些重要的切削参数(每齿进给量、切削深度等)和装夹方式的确定提供了可靠的依据。  相似文献   
18.
重点阐述了在正交车铣中偏心与轴向进给的关系及其偏心对切削过程的影响。  相似文献   
19.
高强度钢切削加工中的切削力较大,其中主切削力、进给抗力是选择切削机床的重要依据.由于刀具角度对切削力影响很大,为此,建立了研究高强度钢切削力的仿真模型,通过正交仿真研究方法分析了刀具角度对切削力的影响,运用极差分析与方差分析对刀具主要几何角度对主切削力、进给抗力影响的主次进行了研究.结果表明,刃口半径对主切削力影响最大,前角对进给抗力影响最大,且主切削力、进给抗力均随刃口半径增加而增大,随前角增大而减小.  相似文献   
20.
轴向车铣理论切削力的研究   总被引:3,自引:1,他引:2  
以瞬时切削面积为主要研究对象建立了瞬时切削力的计算模型,并对瞬时切削力的变化进行了仿真。结果表明,轴向车铣为多参数影响下的变切削力加工,单齿瞬时切削力在整个切削过程中都是一个变化量,且圆周刃为主切削刃,其切削力远大于端面刃。在一次完整的切削过程中,整个刀齿的瞬时切削力产生两次突变。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号