排序方式: 共有63条查询结果,搜索用时 15 毫秒
51.
52.
53.
目前众多的研究者通常直接将标签置信度矩阵作为先验知识直接加入到分类模型中,并没有考虑未标注先验知识对标签集质量的影响.基于此,引入非平衡参数的方法,将先验知识获得的基础置信度矩阵进行非平衡化,从而提出一种非平衡化的标签补全的核极限学习机多标签学习算法(KELM-NeLC):首先使用信息熵计算标签之间的相关关系得到标签置信度矩阵,然后利用非平衡参数方法对基础的标签置信度矩阵进行改进,构建出一个非平衡的标签补全矩阵,最后为了学习获得更加准确的标签置信度矩阵,将非平衡化的标签补全矩阵与核极限学习机进行联合学习,依此解决多标签分类问题.提出的算法在公开的多个基准多标签数据集中的实验结果表明,KELM-NeLC算法较其他对比的多标签学习算法有一定优势,使用统计假设检验进一步说明所提出算法的有效性. 相似文献
54.
针对强混响背景下经典的最小均方误差(Least Mean Square,LMS)滤波算法难以有效地实现信混分离的问题,提出一种基于分数阶傅里叶变换的自适应LMS算法。首先将混响信号和自适应LMS滤波算法中的参考信号进行分数阶傅里叶变换,寻找最优变换域,并在分数阶域进行带通滤波,然后将得到的信号进行分数阶傅里叶反变换,最后将基于正态分布曲线的变步长LMS算法应用于此混响条件下进行滤波。仿真和海试数据验证结果表明,在信混比为0 dB的情况下,算法仍可以有效地滤除混响,使信混比提高6dB。 相似文献
55.
56.
水声目标分类识别是公认的水声信号处理难题,船舶辐射噪声是一种非线性非平稳信号,具有一定的混沌特性,更好地认识船舶辐射噪声的非线性性质,有助于更好地寻找有效的水声目标检测及识别算法。为了解决水声目标的分类识别问题,提出了利用小波包分形和支持向量机组合进行水声目标识别。利用小波包分解得到目标辐射噪声不同频带内信号分形维数作为特征矢量,并输入到支持向量机实现目标分类,实验结果表明,小波包分形和支持向量机的结合有比较好的分类识别效果,有一定的实际应用价值。 相似文献
57.
58.
针对传统特征选择算法无法处理流特征数据、冗余性计算复杂、对实例描述不够准确的问题,提出了基于粗糙集的数据流多标记分布特征选择算法。首先,将在线流特征选择框架引入多标记学习中;其次,用粗糙集中的依赖度替代原有的条件概率,仅仅利用数据自身的信息计算,使得数据流特征选择算法更加高效快捷;最后,由于在现实世界中,每个标记对实例的描述程度并不相同,为更加准确地描述实例,将传统的逻辑标记用标记分布的形式进行刻画。在多组数据集上的实验表明,所提算法能保留与标记空间有着较高相关性的特征,使得分类精度相较于未进行特征选择的有一定程度的提高。 相似文献
59.
60.
基于信息Granule属性约简的求解 总被引:1,自引:0,他引:1
在传统基于分辨矩阵的约简方法中,用属性构成的集合表达对象间可区分性质;给出了信息Granule的二进制数构造方法,将对象间的可区分性质通过可区分函数的定义实现,并给出约简和核的求解算法。不难发现,后者比施行分辨矩阵更有利于在计算机上实现。 相似文献