首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8077篇
  免费   400篇
  国内免费   45篇
电工技术   217篇
综合类   20篇
化学工业   1629篇
金属工艺   168篇
机械仪表   210篇
建筑科学   258篇
矿业工程   9篇
能源动力   538篇
轻工业   797篇
水利工程   90篇
石油天然气   158篇
武器工业   4篇
无线电   994篇
一般工业技术   1431篇
冶金工业   620篇
原子能技术   80篇
自动化技术   1299篇
  2023年   173篇
  2022年   355篇
  2021年   529篇
  2020年   375篇
  2019年   383篇
  2018年   500篇
  2017年   344篇
  2016年   396篇
  2015年   245篇
  2014年   369篇
  2013年   624篇
  2012年   408篇
  2011年   462篇
  2010年   299篇
  2009年   262篇
  2008年   252篇
  2007年   225篇
  2006年   187篇
  2005年   168篇
  2004年   140篇
  2003年   113篇
  2002年   127篇
  2001年   65篇
  2000年   75篇
  1999年   83篇
  1998年   157篇
  1997年   126篇
  1996年   85篇
  1995年   96篇
  1994年   61篇
  1993年   68篇
  1992年   49篇
  1991年   29篇
  1990年   31篇
  1989年   47篇
  1988年   52篇
  1987年   35篇
  1986年   34篇
  1985年   47篇
  1984年   52篇
  1983年   46篇
  1982年   32篇
  1981年   26篇
  1980年   33篇
  1979年   24篇
  1978年   25篇
  1977年   29篇
  1976年   40篇
  1974年   19篇
  1972年   17篇
排序方式: 共有8522条查询结果,搜索用时 46 毫秒
111.

Security threats are crucial challenges that deter Mixed reality (MR) communication in medical telepresence. This research aims to improve the security by reducing the chances of types of various attacks occurring during the real-time data transmission in surgical telepresence as well as reduce the time of the cryptographic algorithm and keep the quality of the media used. The proposed model consists of an enhanced RC6 algorithm in combination. Dynamic keys are generated from the RC6 algorithm mixed with RC4 to create dynamic S-box and permutation table, preventing various known attacks during the real-time data transmission. For every next session, a new key is created, avoiding possible reuse of the same key from the attacker. The results obtained from our proposed system are showing better performance compared to the state of art. The resistance to the tested attacks is measured throughout the entropy, Pick to Signal Noise Ratio (PSNR) is decreased for the encrypted image than the state of art, structural similarity index (SSIM) closer to zero. The execution time of the algorithm is decreased for an average of 20%. The proposed system is focusing on preventing the brute force attack occurred during the surgical telepresence data transmission. The paper proposes a framework that enhances the security related to data transmission during surgeries with acceptable performance.

  相似文献   
112.

Most schemes exhibit low robustness due to LSB’s (Least Significant Bit) and MSB’s (Most Significant Bit) based information hiding in the cover image. However, most of these IW schemes have low imperceptibility as the cover image distortion reveals to the attacker due to information hiding in MSB’s. In this paper, a hybrid image watermarking scheme is proposed based on integrating Robust Principal Component Analysis (R-PCA), Discrete Tchebichef Transform (DTT), and Singular Value Decomposition (SVD). A grayscale watermark image is twisted/scrambled using a 2D Discrete Hyper-chaotic Encryption System (2D-DHCES) to boost up the robustness/heftiness and security. The original cover image is crumbled into sparse components using R-PCA and using DTT the substantial component is additionally decomposed and the watermark will be embedded in the cover image using SVD processing. In DTT, scarcer coefficients hold the utmost energy, also provide an optimum sparse depiction of the substantial image edges and features that supports proficient retrieval of the watermark image even after unadorned image distortion based channel attacks. The imperceptibility and robustness of the proposed method are corroborated against a variety of signal processing channel attacks (salt and pepper noise, multi-directional shearing, cropping, and frequency filtering, etc.). The visual and quantifiable outcomes reveal that the proposed image watermarking scheme is much effective and delivers high forbearance against several image processing and geometric attacks.

  相似文献   
113.
Journal of Central South University - This work is concerned with the analysis of blood flow through inclined catheterized arteries having a balloon (angioplasty) with time-variant overlapping...  相似文献   
114.
The trivalent rare-earth (RE3+) doped phosphors show tremendous achievement in narrow band multicolor line emission for various applications. However, the 4f–4f absorption transition of these ions is forbidden in UV and blue light excitation. Usually, a sensitizer having spin allowed transition was used as a co-dopant to excite these ions via the energy transfer phenomenon. Another approach promisingly using to excite these ions by efficient energy transfer from the intrinsic emission of the Ca2LuTaO6 double perovskite phosphors host lattice. Phosphors of Ca2LuTaO6 with double perovskite structure were synthesized by using a high-temperature solid-state reaction method. The produced Ca2LuTaO6 double perovskite phosphors show an intrinsic broad band emission centered at 424 nm under the excitation of 313 nm UV light. The origin of this broad band blue emission was deeply investigated by using computation and experimental approaches. The trivalent activator Dy3+ and Eu3+ were doped is a single and co-dopant in the produced Ca2LuTaO6 phosphors to check their excitation in UV and near-UV spectral region. X-ray diffraction and scanning electron microscopy were used to investigate the structure and phase analysis. Various characterizations such as photoluminescence excitation, emission, and CIE chromaticity coordinates were measured which illustrate the potential of Dy3+ and Eu3+ activated Ca2LuTaO6 double perovskite phosphors for narrow band multicolor line emission for various applications.  相似文献   
115.
Reusing wastewater from oil-related industries is becoming increasingly important, especially in water-stressed oil-producing countries. Before oily wastewater can be discharged or reused, it must be properly treated, e.g., by membrane-based processes like ultrafiltration. A major issue of the applied membranes is their high fouling propensity. This paper reports on mitigating fouling inside ready-to-use ultrafiltration hollow-fiber modules used in a polishing step in oil/water separation. For this purpose, in-situ polyzwitterionic hydrogel coating was applied. The membrane performance was tested with oil nano-emulsions using a mini-plant system. The main factors influencing fouling were systematically investigated using statistical design of experiments.  相似文献   
116.
Hydrogels are polymeric materials widely used in medicine due to their similarity with the biological components of the body. Hydrogels are biocompatible materials that have the potential to promote cell proliferation and tissue support because of their hydrophilic nature, porous structure, and elastic mechanical properties. In this work, we demonstrate the microwave-assisted synthesis of three molecular weight varieties of poly(ethylene glycol) dimethacrylate (PEGDMA) with different mechanical and thermal properties and the rapid photo of them using 1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184) as UV photoinitiator. The effects of the poly(ethylene glycol) molecular weight and degree of acrylation on swelling, mechanical, and rheological properties of hydrogels were investigated. The biodegradability of the PEGDMA hydrogels, as well as the ability to grow and proliferate cells, was examined for its viability as a scaffold in tissue engineering. Altogether, the biomaterial hydrogel properties open the way for applications in the field of regenerative medicine for functional scaffolds and tissues.  相似文献   
117.
Styrene as a monomer was emulsified in water using several magnetite nanoparticles concentration and pH values. Emulsified styrene drops were used as templates for polymerization, in presence of water soluble free radical initiator, and formation of composite particles. Styrene template drops stabilization was verified by light as well as scanning electron microscopy imaging, which ensured the participation of the particles in building up a mechanical barrier to stop oil drops coalescence. Furthermore, the produced polystyrene composites were strongly attracted to an external magnet. The difference in particles size as a function of pH was elucidated using zeta potential measurements, which indicated dominance of pH on the hydrophilicity of the particles and consequently the extent of emulsification, which in turn affected the size of the obtained microspheres. Under some circumstances, capsules were formed instead of particles. Thereby, it can be concluded that the magnetic microspheres are optimally formed at pH 2.3 independently of the magnetite content used.  相似文献   
118.
119.
This article reports the design and fabrication of open-cell polyvinylidene fluoride (PVDF) foams as carriers that can promote biofilm growth and organic removal efficiency for biological wastewater treatment in attached growth bioreactors. Open-cell PVDF foams were fabricated by a manufacturing approach that integrated compression molding and particulate leaching. PVDF carriers were structured with two governing factors of leaching agent types (e.g., sodium chloride [NaCl] and sodium acetate [NaOAc]) and contents (e.g., 80 and 90 wt%). Open-cell PVDF foams possessed high porosity and high protected surface area (i.e., more than ×10 to ×20 of the areas of commercialized carriers), which promoted biofilm growth in these carriers. As a successful advantage, PVDF carriers used in the moving bed biofilm reactors (MBBR) were entirely covered by biofilm in both interior and exterior parts without clogging. This provides strong evidence of the bacterial compatibility of the fabricated open-cell PVDF foam carriers. Moreover, the specific morphology of the PVDF carriers in this article provided superior biofilm protection from the detachment in MBBR. Experimental results revealed that PVDF open-cell foams fabricated by 80 wt% of NaCl demonstrated higher mechanical strength with an organic removal efficiency of 77% ± 7% in the corresponding bioreactor containing them.  相似文献   
120.
Deposition of diamond films onto various substrates can result in significant technological advantages in terms of functionality and improved life and performance of components. Diamond is hard, wear resistant, chemically inert, and biocompatible. It is considered to be the ideal material for surfaces of cutting tools and biomedical components. However, it is well known that diamond deposition onto technologically important substrates, such as co-cemented carbides and steels, is problematic due to carbon interaction with the substrate, low nucleation densities, and poor adhesion. Several papers previously published in the relevant literature have reported the application of interlayer materials such as metal nitrides and carbides to provide bonding between diamond and hostile substrates. In this study, the chemical vapor deposition (CVD) of polycrystalline diamond on TiN/SiN x nc (nc) interlayers deposited at relatively low temperatures has been investigated for the first time. The nc layers were deposited at 70 or 400 °C on Si substrates using a dual ion beam deposition system. The results showed that a preliminary seeding pretreatment with diamond suspension was necessary to achieve large diamond nucleation densities and that diamond nucleation was larger on nc films than on bare sc-Si subjected to the same pretreatment and CVD process parameters. TiN/SiN x layers synthesized at 70 or 400 °C underwent different nanostructure modifications during diamond CVD. The data also showed that TiN/SiN x films obtained at 400 °C are preferable in so far as their use as interlayers between hostile substrates and CVD diamond is concerned. This paper was presented at the fourth International Surface Engineering Congress and Exposition held August 1–3, 2005 in St. Paul, MN.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号